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ABSTRACT

THEORETICAL EPIDEMIOLOGY ANALYSIS OF PLAGUE, POLIO,

AND COVID-19 OUTBREAK

by

Vivian J. Goshashy

Spring 2023

Infectious diseases have been a persistent challenge to global health

throughout history, and they continue to pose a significant threat in the present

day. With the emergence of new diseases and the reemergence of existing ones,

understanding the transmission dynamics, and developing effective prevention

strategies are critical for public health. Mathematical modeling has proven

to be a valuable tool in studying infectious diseases, allowing researchers to

simulate and analyze various scenarios to gain insights into disease spread and

inform public health policies. This paper provides an overview of the different

types of mathematical models utilized in infectious disease modeling, focus-

ing on their application in studying the spread of complex diseases such as

Plague, Polio, and Covid-19. Mathematical models can capture the intrica-

cies of disease transmission by incorporating factors such as population demo-

graphics, disease characteristics, and intervention strategies. By quantifying

these variables, researchers can simulate the dynamics of disease transmission

and assess the impact of various interventions, such as vaccination campaigns,

social distancing measures, or treatment protocols. To ensure the reliability

of these models, statistical techniques are employed to validate their accu-

racy and assess their goodness of fit to real-world data. Model fitting involves



iv

comparing the simulated outputs with observed epidemiological data, allow-

ing researchers to refine their models and improve their predictive capabilities.

Moreover, understanding the stability of steady states in these models is cru-

cial in predicting the long-term behavior of an outbreak. By analyzing the

stability of these states, researchers can determine whether an outbreak will

be self-limiting or persist within the population over time. By studying dis-

eases like Plague, Polio, and Covid-19, this research aims to provide valuable

insights into the spread of infectious diseases and contribute to the develop-

ment of effective intervention strategies. The findings from this study can

enhance our understanding of disease transmission dynamics and help inform

public health efforts to prevent and control future epidemics. Ultimately, the

goal is to minimize the impact of infectious diseases on populations worldwide

and ensure the well-being of individuals and communities.
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Chapter 1

Introduction of Epidemiology

Analysis

1.1 Mathematical Modeling of Infectious Dis-

eases

Infectious diseases have long been a major global health challenge, with

new diseases constantly emerging and existing ones are resurging. From his-

tory, some of the earliest known infectious diseases include tuberculosis, lep-

rosy, and malaria, which were prevalent in ancient times [1]. Further, in the

14th century, an estimated 25 million people in Europe died of the bubonic

plague also known as the Black death [2]. In the 19th century, significant

progress was made in the understanding and control of infectious diseases.

The discovery of bacteria and viruses, and the development of vaccines and

antibiotic, helped to prevent and treat many infectious diseases. Despite these

advances, infectious diseases still remain a major health challenge, especially
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in developing countries. For instance, we have observed new diseases emerg-

ing such as HIV/AIDS, Ebola, Polio, and Covid-19, which have negatively

impacted the global economy [1] [3] [4] [5].

In the 1950s and 1960s, researchers developed models to understand the

transmission dynamics of sexual transmitted infections such as syphilis and

gonorrhea diseases and evaluated the impact of different prevention strategies

[6]. These models were used to inform public health policies and to design

clinical trials of new treatments. Further, these models were adapted and

developed in the study of HIV/AIDS transmission in the 1970s and 1980s [6].

Today, scientists use mathematical models to study a wide range of infectious

diseases and epidemiology.

Mathematical modeling is used to uncover patterns in epidemics, to ex-

trapolate epidemic behaviors, and to study the effect of interventions such as

immunization, quarantine, social distance, and hygiene measures. Mathemat-

ical modeling of infectious diseases uses mathematical equations to describe

and analyze the spread and control of diseases within populations. These mod-

els are set to represent the different classes of individuals in a population such

as susceptible, exposed, infected, recovered(asymptomatic or symptomatic),

and dead. There are several main types of mathematical models. The most

widely studied are SIR type models, which tracks the number of susceptible,

infected, and recovered individuals in a populations over time and represents

with system of ODEs. In addition, agent-based models are a class of models

that simulate the behavior of individual agents such as people or animals and

the interactions between them to model disease transmission [7].

In recent times, with the emergence of complex diseases like Covid-19
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and intricate transmission patterns, advanced models such as SEID, SIRD, and

SIRDSI are being employed to better understand the disease dynamics. The

SEID model, for example, allows for the prediction of the number of individuals

who are exposed but do not yet show symptoms and tracks the number of

either dead or disease (symptomatic), while the SIRD model accounts for

the possibility of asymptomatic and symptomatic transmission. The SIRDSI

model incorporates the concept of immunity decay, where individuals who have

recovered from the disease may become susceptible to infection again after a

certain period of time. Furthermore, these models are adaptable to investigate

the spread of other infectious diseases, such as plague and polio, which had

caused major outbreaks in different regions, such as Europe and United States.

By utilizing these models, we gain a deeper understanding of the transmission

patterns of infectious diseases and develop strategies to control their spread.

We then validate models using statistical techniques like Markov Chain Monte

Carlo and look at their measures such as Bayesian Inference Criterion (BIC)

and root mean squared error (RMSE) and allows for an assessment of their

goodness of fit and comparison of their performance. Moreover, mathematical

models are used to determine the stability of the steady states. Stability of

the steady states provides information about whether an outbreak will be self-

limiting or will persist in the population over time. Stability of steady states

allows scientists to predict the long-term behavior of a disease outbreak. We

will investigate the classical SIR model and determine the stability. This

analysis is valuable for public health officials in determining if an outbreak

is self-limiting. In such cases, they can focus on implementing short-term

measures to reduce transmission and control the outbreak until it subsides.

On the other hand, if an outbreak is predicted to become pandemic; then,
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they would need to focus on long-term interventions and measures to prevent

the spread of the disease in the population.

This project aims to provide insights into the spread of infectious dis-

eases and determining the most effective interventions to avoid an epidemic

outbreak. This is going to be achieved by considering various mathematical

models of a selection of infectious diseases and fitting them to the available

data. However, these models are based on assumptions about disease transmis-

sion; thus, their accuracy depends on the quality of the data used to build them

and the assumptions made. Our goal is that the findings from this research

will enhance our knowledge of how infectious diseases spread and potentially

aid in efforts to prevent their spread.
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1.2 Analyzing the classical SIR Model

The classical SIR model is a widely used mathematical model used to

study the spread of infectious diseases in a population [8]. The model assumes

that the population can be divided into three compartments: Susceptible (S),

Infected (I), and Recovered (R), with the total population size N = S+ I +R

assumed to be constant, and individuals can move from one compartment

to another over time. The classical SIR model is based on several key as-

sumptions, individuals can only leave the susceptible group by being infected

and infected individuals can leave the infected group if they recover from the

disease and acquired immunity. Further, we assume that people in the pop-

ulation make random contact with one another, and there is a closed system

such that the population neither increases nor decreases. Lastly, there is no

vaccination [8] [9].

Figure 1.1: SIR Model Transitions - Illustration of inward and outward transi-
tions in a classical SIR model. The model captures the movement of individuals
between compartments, with inward transitions positively influencing the rate
of change and outward transitions negatively impacting it.
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System of ODEs and Initial Conditions

The rate of change of the three populations (S, I, R) in the model

is described by a system of ordinary differential equations. The number of

susceptible individuals at time t is denoted as S(t), the number of infected

individuals as I(t), and the number of recovered individuals as R(t). The rate

of change of these populations over time can be described by the following

system of differential equations.

dS

dt
= −βS(t)I(t)

dI

dt
= βS(t)I(t)− λI(t)

dR

dt
= λI(t)

(1.1)

The specific description of the SIR model is shown above where β repre-

sents the transmission rate and λ is the recovery rate. In our model, we would

want to have I(t) = 0. This means that there is disease free equilibrium.

Our initial conditions are:

S(0) = S0 > 0, I(0) = I0 ≥ 0, R(0) = 0 (1.2)

The classical SIR model has only three compartments; thus, the rates of change

of these compartments must sum up to the total rate of change of the popu-

lation. The law of conservation is then used to understand whether the total

population is conserved or not. From the total populations size, we know that

N = S + I + R. By taking derivative of both sides with respect to time, we

get [8] [10]:
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dN

dt
=

dS

dt
+

dI

dt
+

dR

dt
= −βS(t)I(t) + βS(t)I(t)− λI(t) + λI(t) = 0 (1.3)

The equation describes that the total rate of change of the population

is equal to the sum of the rates of change of the three compartments. We

observe that ∂N
∂t

= 0, this means that the total populations is conserved. The

coservation law help us to understand the dynamics of the disease transmission

and to identify factors that contribute to its spread [8].

Variable Description unit
β Transmission rate 1

people * days

λ Recovered rate 1
days

t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered people people
N Total number of people people

Table 1.1: Units of the variables and parameters in the SIR model.

Dimensional Analysis

Here we want to reduce the number of parameters and make the model

dimensionless. We focus on the Infected population, then the important pa-

rameter would be transmission rate which affects the qualitative behavior of

the solutions. We assume that time is measured in days, then we use the dif-

ferential equations 1.1 to determine the units carried by each of the variables

and parameters in the model.

From the equation in the models, we observe that the left-hand side

have dimensions of number of people per time. This is also true for every term
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in the equations. Further, we define new variables, x(t) as the fractional of the

population in the susceptible class and y(t) as the fractional of the population

in the infected class [8].

Now, we define arbitrary dimensionless variables,

x =
S

N
, y =

I

N
, τ =

t
1
µ

= t ∗ µ (1.4)

Using equation N = S + I +R, it follows that

S

N
+

I

N
=

N

N
= x+ y = 1

Next, we substitute equation 1.4 into the model equations,

S = xN, I = yN, t =
τ

µ
(1.5)

This leads to,

d(xN)

d( τ
µ
)

= −β(xN)(yN)

d(yN)

d( τ
µ
)

= β(xN)(yN)− λ(yN)

We cancel the common factors N and µ on both sides,

dx

dτ
= −βN

µ
xy

dy

dτ
=

βN

µ
xy − λ

µ
y

We notice that the equation contains two remaining ratio of parameters

that we denote by the notations



9

R0 =
βN

µ
and M0 =

λ

µ

We observe that these two are important quantities such that R0 is the

basic reproductive number. Thus, we rewrite our equations by substituting

new variables,

dx

dτ
= −R0xy

dy

dτ
= R0xy −M0y

(1.6)

Identifying Steady States

Steady states show the equilibria of the equations. To determine whether

we have a disease-free equilibrium or a disease endemic state, we need to de-

termine steady states of the model. Let us observe equations 1.6. For steady

state to occur, we need dx
dt

= 0 and dy
dt

= 0. Here we look at the equation above

that involves y and we use this equation to determine when y = 0 and when

y ̸= 0. Therefore, using equations 1.6, we then have two steady states; disease

free-equilibrium and disease endemic state. The two equilibrium points of the

system are as follows [8]:

Here, we want I = 0. Since, x + y = 1 by conservation law, this leads

to x = 1− y. If we substitute x to dy
dτ

from equation 1.6, leads to

dy

dτ
= R0(1− y)y −M0y = y[(R0 −M0)−R0y]

Steady states satisfy ∂y
∂τ

= 0. Thus, y[(R0 −M0)−R0y] = 0.

1.Disease-free equilibrium points: A solution is observed where

y = 0 and, due to conservation, x = 1. This solution corresponds to a pop-



10

ulation without any infected individuals, leading to I(t) = 0 and S(t) = N ,

where N denotes the total population size.

2. Disease Endemic equilibrium points: If the steady state of a

classical SIR model has non-zero infected individuals, i.e., I ̸= 0, then the

value of x at the steady state is equal to M0

R0
due to the conservation of the

total population size. Additionally, y at the steady state is equal to 1 − M0

R0
.

This implies that the disease is widely spread in the population.

A steady state is biologically feasible only if the reproductive number of

the disease, denoted by R0, is greater than 1. In such a case, the disease is con-

sidered to be endemic, and the steady state with non-zero infected individuals

is stable. On the other hand, if R0 < 1, the only biologically feasible steady

state is the disease-free state where x0 = 0, and the disease is eradicated.

Figure 1.2: In the left hand side figure, R0 < 1 and M0 > R0, such that we have
a disease-free equilibrium. The right hand side figure R0 > 1 and M0 < R0,
the disease is at endemic state.
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Stability Analysis

To assess the stability of a system, we examine the Jacobian matrix,

defined as:

J(x,y) =

 dfx
dt

dfy
dt

dgx
dt

dgy
dt


The functions f(x, y) and g(x, y) in the Jacobian matrix represent the

rates of change of x and y with respect to time t. The Jacobian matrix

helps us to analyze the local behavior of the system around a specific point.

By calculating the determinant and trace of the Jacobian matrix, we can

determine the stability of the system.

By calculating the determinant and trace of the Jacobian matrix, we

can make determinations about the system’s stability. The determinant reveals

insights into the local stability of the system. If the determinant is positive, it

suggests that the system is stable, indicating that small perturbations around

the steady state will eventually converge back to it. Conversely, a negative

determinant implies an unstable system, where perturbations may grow over

time, leading to unpredictable behavior.

The trace of the Jacobian matrix is the sum of the diagonal elements

and can be used to identify the type of stability, such as stable nodes or

unstable saddles. For example, if the trace is negative and the determinant

is positive the equilibrium point is a stable node, indicating that the system

will converge towards that point from nearby initial conditions. Eigenvalues of

the Jacobian matrix also provide insights into the stability of the system. The

eigenvalues can be used to classify the equilibrium point as stable or unstable,

and the sign of the real part of the eigenvalues determines the nature of the
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stability, such as oscillatory or asymptotic. By analyzing the eigenvalues of

the Jacobian matrix, we can gain a deeper understanding of the behavior of

the system near the equilibrium point.

Using the system of equations from dimensionless equations, we have,

J(x,y) =

−R0y −R0x

R0y R0x−M0


1. Disease-free equilibrium points

J(x,y) = J(1,0) =

0 −R0

0 R0 −M0


we observe that

|J | = det|J | = 0

with

β = tr(J) = R0 −M0 < 0

and λ = 0.

This indicates that the equilibrium point is a saddle node.

2. Disease Endemic equilibrium points

Evaluating the Jacobian matrix at the equilibrium (M0

R0
, R0−M0

R0
), we find

J
(
M0
R0

,
R0−M0

R0
)
=

M0 −R0 −M0

M0 −R0 0


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It follows that

|J | = det|J | = −M2
0 +M0R0 < 0

with

β = tr(J) = M0 −R0 > 0

and λ1,2 =
M0

2
− R0

2
±

√
−(M0−r0)(3M0+r0)

2
.

Therefore, this equilibrium point is a saddle node.

Numerical Simulation

The classical SIR model is commonly used to simulate the behavior of

a population during a disease outbreak. In order for an outbreak to occur,

at least one individual in the population must be infected with the disease.

Transmission of the disease is believed to occur through close contact between

individuals in the population. In this model, we assume that the population

size is N = 1000 people, the initial number of infected individuals is I(0) = 1,

the transmission rate is β = 0.2( 1
days

), and the recovery rate is λ = 1
10

days.
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Figure 1.3: Simulation of the classical SIR model demonstrates the temporal
evolution of susceptible, infected, and recovered individuals in a population.
As time progresses, the number of susceptible individuals gradually decreases,
while the number of infected individuals increases. The rate of deaths caused
by the disease follows the trend of the infected population, at a slower pace.
This simulation was conducted with a transmission rate (β) of 0.2 1

day
and a

recovery rate (λ) of 1
10

days, reflecting the dynamics of the disease spread and
recovery.

Figure 1.3 shows that as time progresses, the number of susceptible

individuals in the population decreases while the number of infected individu-

als increases. In addition, the number of recovered individuals also increases,

although at a much slower rate than the number of infected individuals. This

simulation provides insight into how each population group changes over time

during an outbreak. Such information can be used to devise strategies to re-
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duce the spread of the disease, with the ultimate goal of increasing the number

of susceptible or immune individuals in the population.

It should be noted that the classical SIR model has limitations and

assumptions. For instance, it assumes a homogeneous population, constant

population size, and a fixed transmission rate. Despite these limitations, it

remains a useful tool for understanding the dynamics of disease spread in

populations.

Force of infection and Disease incidence

The force of infection (F) is an important epidemiological concept that

measures the rate at which susceptible individuals acquire a disease within a

population and is influenced by various factors such as the pathogen’s viru-

lence, host susceptibility, and effectiveness of control measures. Disease inci-

dence is a measure of the frequency of new cases of a disease within a defined

population over a specific period, providing insight into the occurrence and

spread of infectious diseases and estimating the risk of acquiring the disease

within the population.

The average force of infection, denoted as (F̃ ), is calculated by inte-

grating the product of the transmission rate (β) and the number of infectious

individuals (I) over a specific time period (T). This integral is then divided

by the product of the total population size (N) and the duration of the time

period (T). Essentially, it provides an average value of the force of infection

over time.

F̃ =

∫ T

0
(βI)dt

NT
(1.7)
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Similarly, the average disease incidence, denoted as (D̃), is obtained by

integrating the product of the recovery rate (λ) and the number of infectious

individuals (I) over a specific time period (T). This integral is also divided

by the product of the total population size (N) and the duration of the time

period (T). It provides an average value of the disease incidence over the given

time frame.

D̃ =

∫ T

0
(λI)dt

NT
(1.8)

Figure 1.4: The force of infection (F) and disease incidence over time during a
simulated disease outbreak using the classical SIR model. The total population
size is 1000 individuals, with an initial infected population of 1 person. The
recovery rate is set at 1/10, while the transmission rate varies between 0 and
100 with a time step of 1.
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Over time, the dynamics of infection and disease incidence follow dis-

tinct patterns. Initially, when the transmission rate of a disease is low, both

the force of infection (the rate at which susceptible individuals become in-

fected) and disease incidence (the number of new cases) remain relatively low.

This is because the disease is not spreading rapidly, and only a small portion

of the population is affected.

However, as the transmission rate increases during a certain period of

time, more individuals become infected, leading to a higher force of infection.

This means that a larger proportion of susceptible individuals are being ex-

posed to the disease, resulting in a relative increase in disease incidence. The

number of new cases rises, reflecting a growing outbreak.

As the outbreak progresses, the force of infection and disease incidence

may continue to increase, reaching a peak. The specific dynamics of the out-

break, such as the effectiveness of control measures or the development of

natural immunity, will influence whether the increase in transmission eventu-

ally slows down.

If effective control measures are implemented or a significant portion

of the population develops natural immunity. As a result, disease incidence

reaches a plateau, where the number of new cases remains relatively constant

over time. This plateau signifies a phase of the outbreak where the disease is

no longer rapidly spreading, and the number of infected individuals remains

fairly consistent.

Figure 1.4 illustrates these patterns, showcasing the relationship be-

tween the force of infection and disease incidence throughout the course of the

outbreak. It visually demonstrates the initial low levels, the increase during
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the outbreak, and the subsequent stabilization or decline depending on the

control measures and immunity factors involved. This idea is going to be re-

introduce in chapter 3 such that we examine criteria for endemic stability of

Polio and Covid-19 disease.
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1.3 Model fitting

Markov-Chain Monte-Carlo Simulation (MCMC)

MCMC is a powerful Bayesian method used for estimating the distri-

bution of parameters by randomly sampling them from a probabilistic space.

This technique is particularly useful in epidemiology models where there are

numerous unknown parameters. The distribution of parameters provides a

mathematical representation of all possible values of parameters and their

likelihood of occurrence [11] [12]. MCMC algorithms are iterative processes

where the future state depends on the current state process. The sequence of

events that are probabilistically related to one another, and the succession of

these steps is known as a Markov Chain. probability [11] [13]. Markov Chains

are used in MCMC to generate a sequence of parameter samples that represent

the posterior distribution of the parameters. By sampling from the posterior

distribution, we can estimate the most likely values of the parameters and

quantify the uncertainty associated with these estimates [11].

The MCMC method enables the estimation of parameters such as means,

variances, expected values, and exploration of the posterior distribution of

Bayesian models. Monte Carlo simulations refer to a technique that involves

sampling many random values from a posterior distribution of interest. This

process involves repeatedly generating random numbers to observe how fixed

parameters are estimated. Monte Carlo simulations provide an approximation

of a parameter when it is impossible or prohibitively expensive to calculate it

directly [12] [11].

In epidemiology, the MCMC technique is commonly utilized to fit de-
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terministic models to observed data and estimate unknown parameters. Typi-

cally, these models have a time-step of one day or one week, and the likelihood

of the observed data given the model parameters is evaluated as the prod-

uct of Poisson random variables. The prior distributions are often uniformly

distributed, and MCMC simulations are employed to derive the posterior dis-

tributions. However, MCMC algorithms are sensitive to their initial starting

point, and they often require a burn-in or warm-up phase to explore a promis-

ing part of the search space. After this phase, prior samples can be discarded,

and valuable samples can be collected.

In this process, Metropolis-Hastings’s algorithms are used, which in-

volve proposing a probability distribution to sample, then using an acceptance

criterion to decide whether the new sample is accepted into the chain or dis-

carded [13]. The acceptance criterion is how likely the proposal distribution

differs from the true next-state probability distribution. Model convergence

will be assessed using the Gelman-Rubin statistic, commonly used to deter-

mine if multiple chains of MCMC simulations have reached convergence and

are sampling from the same posterior distribution [14]. The Gelman-Rubin

statistic compares the within-chain variance to the between-chain variance of

the MCMC samples. If the chains have converged, the within-chain variance

should be similar to the between-chain variance. The statistic is calculated by

taking the square root of the ratio of the average of the within-chain variances

to the pooled variances across all chains. If the Gelman-Rubin statistic is close

to 1, it indicates that the chains have converged and are sampling from the

same posterior distribution [14].
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Bayesian Information Criterion (BIC)

BIC is a model selection method that uses the likelihood function and

is particularly useful in mathematical modeling when dealing with models that

have many parameters. The BIC introduces a penalty term that is propor-

tional to the number of parameters, helping to mitigate the risk of overfitting,

specifically:

BIC = ln(n)× k − 2 ln(L̂),

where L̂ represents the maximized value of the likelihood function of the

model, n represents the number of data points, and k represents the number

of free parameters that need to be estimated.

Mean Squared Error (RMSE)

The RMSE (Root Mean Square Error) is a commonly used metric for

evaluating the predictive accuracy of quantitative models. It measures the

dissimilarity between the predicted values generated by a model and the actual

observed values in a dataset. Mathematically, the RMSE is defined as:

RMSE =

√√√√√ n∑
i=1

(ŷi − yi)
2

n

In this equation, ŷi represents the predicted values, yi represents the

observed values, and n represents the total number of observations in the

dataset. By calculating the RMSE, we can determine how well a model fits

the data.
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Chapter 2

Analysis of Plague Outbreak in

Europe

In this chapter, we delve into the dynamics of bubonic plague epi-

demics using several mathematical models, including the Pneumonic model,

Lynch-Oster Rat Flea model, Keeling-Gilligan model, and Human Ectopara-

site model. These models allow us to examine how the disease spreads among

different populations, such as humans, rats, and fleas.

We begin by discussing the process of parameter estimation for these

models. This involves estimating important parameters like transmission rates,

carrying capacities, and death rates. To fit the models to observed mortality

data from various cities, we employ Bayesian inference techniques. Through

this fitting process, we obtain posterior distributions for the model parameters.

To assess how well the models fit the observed data, we use metrics such as the

Bayesian Information Criterion (BIC) and root mean squared error (RMSE).

These metrics help us evaluate the models’ ability to capture the observed

data and provide a basis for model comparison.
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This chapter emphasizes the significance of understanding the assump-

tions and limitations of the models. Each model has its own specific focus and

assumptions, which may involve considering transmission through respiratory

systems, flea ecology, contact networks, or rodents. By fitting these models to

data from multiple cities, such as Givry, Florence, Eyam, Barcelona, Moscow,

and Malta, we can compare the dynamics of plague epidemics across different

locations and time periods. This comparison reveals variations in transmission

rates and flea ecology, shedding light on the diverse aspects of the disease’s

spread.

Lastly, we discuss the findings presented in Dean et al.’s paper, which

suggests that human ectoparasites were the primary vectors for plague during

the second pandemic, including the Black Death. However, in this chapter,

we introduce an additional model, the Lynch-Oster model, which explores the

population dynamics of rats and fleas over time. By incorporating this model,

we present a compelling argument that the pandemic was not solely caused by

human ectoparasites but also by infected rats. This highlights the importance

of considering multiple factors and populations in understanding the dynamics

of bubonic plague epidemics.

2.1 Overview of Plague Disease

Background of Plague Outbreaks

Plague is an extremely contagious disease that can result in severe

illness and fatalities in both humans and animals. It primarily affects wild

mammals and can lead to the death of vulnerable rodent species, cats, camels,
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and other mammals when it spreads from its reservoir host species. Plague is

caused by Yersinia pestis, a bacteria that is primarily found in small mammals

and their fleas. The bacteria were first discovered during the 1894 pandemic

that originated in China and spread to Hong Kong, where it was identified by

a French Pastorian bacteriologist. The pandemic is thought to have occurred

due to the spread of infected fleas over long distances, as they were carried

by rats and humans along trade routes [15]. The fleas multiplied by feeding

on their hosts, biting with increased frequency and agitation, and infested

new hosts when the original hosts died. Commensal domestic black rats and

brown sewer rats (Rattus rattus and Rattus norvegius) and their fleas (Xenop-

sylla cheopis) are considered the most important hosts and vectors involved

in human outbreaks, but many other flea species can transmit plague [16].

Plague has caused three major outbreaks in human history, each with

devastating mortality rates in various nations and continents. These pan-

demics had different origins and paths of spread. The first plague occurred in

541 AD, starting in central Africa and spreading to Egypt and the Mediter-

ranean Sea. This plague is known as the Justinian plague. The second plague,

known as The Black Death, occurred in the 14th century. It originated in Asia,

spread to the Crimea, and then Europe and Russia. The Black Death was one

of the deadliest pandemics in human history, causing an estimated 75 to 200

million deaths worldwide. It is believed to have originated from gerbils, where

it was carried by fleas that infested black rats. The disease then spread to

the Crimea, where it was first recorded in the early 1340s. From the Crimea,

the Black Death spread rapidly along trade routes and sea ports, eventually

reaching Europe and Russia [15].

The third plague began in the mid 19th century, originating in Yunnan,
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China, and spreading to Hong Kong and India before spreading worldwide [15].

Advances in technology, such as the expansion of trade routes, allowed goods

to be transported faster, which facilitated the establishment of Yersinia pestis

cycles worldwide. Countries that were previously free of plague saw outbreaks,

such as the United States, which had 61 cases between 1994 and 2003, and 13

cases and 2 deaths in 2006, as well as Madagascar and South America. During

the 1990s and 2000s, scientists observed the reappearance of plague in several

African countries. Between 2013 and 2018, the World Health Organization

reported 2886 cases and 504 deaths in countries such as Madagascar, Uganda,

and Tanzania. The recent increase in the number of cases is primarily due

to poverty, resulting in poor housing, sanitation, and lack of public health

services, which favor outbreaks of plague by increasing rodent populations. In

warm climates, rodent flea fertility increases, leading to a rapid increase in the

density of the rodent population and subsequent outbreaks of plague. Plague is

categorized as a re-emerging disease; it reappears in different regions [15] [17].

Plague Types

Plague has similar symptoms to the flu, high fever, chills, malaise, and

headache. The incubation period of plague is 2 to 3 days but may be as long as

6 days [15]. Further, symptoms of plague mostly depend on how the patient

was exposed to the disease. There are three main clinical forms of plague

depending on type of infection. These are,

1. Bubonic plague

This type of plague, known as bubonic plague, is primarily transmitted

through the bites of infected fleas vector carrying the bacterium Yersinia
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pestis. When an infected flea bites a person, the bacteria enter the body

at the site of the bite and travel through the lymphatic system to the

nearby lymph nodes, where they begin to replicate. As the bacteria mul-

tiply, the affected lymph nodes become inflamed and painful. Eventually,

the lymph nodes can develop into open sores filled with pus [18] [2].

The symptoms of bubonic plague typically appear within the first week

after infection, resulting in an incubation period of approximately 2 to 8

days [15]. Patients infected with bubonic plague may experience symp-

toms such as fever, headache, chills, weakness, and swollen and painful

lymph nodes in the affected area. If left untreated with appropriate an-

tibiotics, the bacteria can potentially spread to other parts of the body,

leading to more severe forms of the disease.

It is important to note that while bubonic plague is primarily transmit-

ted through flea bites, there are other forms of plague transmission as

well, such as through respiratory droplets or direct contact with infected

animals or their tissues. Each form of transmission may lead to different

clinical presentations and manifestations of the disease. Early diagno-

sis and prompt treatment with antibiotics are crucial in managing and

controlling bubonic plague. Timely intervention can help prevent the

progression of the infection and reduce the risk of complications or the

spread of the disease to other individuals.

2. Pneumonic plague Bubonic plague, if left untreated, can progress to

a more severe form called pneumonic plague. Pneumonic plague occurs

when the Yersinia pestis bacteria spread from the initial site of infec-

tion, such as the lymph nodes, to the lungs. Unlike bubonic plague,
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which is primarily transmitted through flea bites, pneumonic plague has

the potential for person-to-person transmission through infectious res-

piratory droplets [2]. The incubation period for pneumonic plague is

typically shorter, ranging from 1 to 3 days [18]. This rapid onset of

symptoms distinguishes pneumonic plague from bubonic plague. Pneu-

monic plague has a higher mortality rate compared to bubonic plague,

making it a more severe and life-threatening form of the disease.

When pneumonic plague is not promptly diagnosed and treated, it can

lead to respiratory shock or failure, further exacerbating the severity of

the condition. However, if pneumonic plague is detected early and ap-

propriate antibiotic treatment is initiated within the first day of symp-

tom onset, the recovery rates can be high. It is important to note that

pneumonic plague is the only form of plague that can be transmitted

directly from person to person through respiratory droplets. This mode

of transmission poses a significant risk of rapid disease spread within

communities or populations [17].

Efforts to control pneumonic plague involve early detection of cases, iso-

lation and treatment of infected individuals, and the implementation of

preventive measures to limit person-to-person transmission. In outbreak

situations, public health interventions such as contact tracing, quaran-

tine measures, and the administration of prophylactic antibiotics to close

contacts may be necessary to prevent further spread of the disease [15].

3. Septicemic plague

Septicemic plague is an extremely severe form of bacterial infection

caused by Yersinia pestis. It can be transmitted to humans through
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the bloodstream, primarily as a result of mishandling infected animals

or being bitten by fleas that carry the bacteria [2].

The symptoms of septicemic plague can vary, but commonly include

fever, chills, extreme weakness, abdominal pain, shock, and bleeding

into the skin and other organs. In severe cases, patients may experience

tissue necrosis, which leads to the death of tissues and can result in

blackening of affected areas, particularly in the extremities such as the

toes, fingers, and nose [18].

Mechanisms of Spread

Plague is an endemic disease in various wildlife species. Rats and fleas

are considered major hosts in carrying the plague between reservoirs and peo-

ple. The transmission of plague primarily takes place in rural and semi-rural

areas characterized by poor sanitation and high rodent populations. The dis-

ease can be transmitted to humans through the following means:

1. Animal-Human Transmission

Humans can become infected with the plague through various means.

One mode of transmission is by consuming infected animals, such as

guinea pigs or camels, which serve as reservoirs for the disease [18]. An-

other way transmission can occur is through the handling of tissues or

body fluids of infected animals. For example, if a hunter kills an infected

rabbit without proper protection, the fleas on the rabbit may transfer to

the hunter, resulting in plague transmission [19].

A range of animals can be affected by the plague, including rats, mice,

squirrels, rabbits, prairie dogs, chipmunks, and camels in rural areas. In
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1994, for instance, a sick camel in Saudi Arabia led to five human cases

of plague and two deaths. The disease was transmitted to humans who

had consumed the camel’s meat. Similarly, in 2002, an individual who

had hunted and skinned a sick wildcat contracted the plague disease [19].

Domestic animals like dogs and cats can also contract the plague by

being bitten by infected fleas or by consuming rodents infected with the

disease. These infected domestic animals can then transmit the disease

to humans [18] [19]. Therefore, people who handle domestic animals such

as cats and dogs are at a higher risk of exposure to the disease if the

animals are infected. Transmission occurs when the infected animal’s

blood comes into contact with broken skin on the human body [17].

2. Human-Human Transmission

In addition to the previously mentioned modes of transmission, plague

can also spread through direct respiratory droplets. This occurs when an

infected person coughs or sneezes, releasing droplets into the air that can

be breathed in by susceptible individuals, leading to the transmission of

the plague [2].

When an infected person coughs or sneezes, respiratory droplets con-

taining the bacteria Yersinia pestis can be expelled into the surrounding

environment. These droplets may contain viable bacteria and can travel

through the air for a certain distance, depending on various factors such

as air currents and environmental conditions. If a susceptible person is

in close proximity to the infected individual or within the range of these

respiratory droplets, they can inhale the contaminated droplets into their

respiratory system, potentially leading to infection [15].
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Respiratory transmission of the plague is of particular concern in crowded

or close-contact settings, such as households, healthcare facilities, or

densely populated areas. It highlights the importance of implementing

measures to prevent the spread of respiratory droplets, such as main-

taining good respiratory hygiene, practicing cough etiquette (covering

the mouth and nose with a tissue or elbow when coughing or sneezing),

and wearing appropriate personal protective equipment when caring for

infected individuals.

3. Flea-Human Transmission

Humans can contract the plague through flea bites, particularly in rural

areas where wildlife rodent species are present. In these regions, warm

climates, coupled with factors such as poor sanitation and high rodent

populations, create an environment conducive to flea infestations. People

in these areas are at an increased risk of being bitten by infected fleas,

leading to the transmission of the plague [18].

Fleas serve as important vectors in the transmission of the plague. They

can acquire the Yersinia pestis bacteria by feeding on infected animals,

typically rodents, which act as reservoir hosts. Once the fleas become

infected, they can transfer the bacteria to humans through their bites. In

rural settings, where close contact between humans and wildlife rodents

is more likely, the risk of flea bites and subsequent plague transmission

is higher [2].

The transmission of plague through flea bites is influenced by various

factors. For instance, individuals in rural areas may have their legs and

feet exposed due to traditional clothing practices or lack of protective
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measures. This increases the chances of flea bites directly on the skin,

providing an entry point for the bacteria. Additionally, warm climates

in developing countries create an environment where fleas thrive, further

increasing the risk of exposure to fleabites [19].

Prevention of flea bites is crucial in reducing the risk of plague transmis-

sion. Measures such as wearing protective clothing, using insect repel-

lents, and maintaining good personal hygiene can help minimize exposure

to fleas. Controlling rodent populations and implementing flea control

strategies in both domestic and wildlife settings are also important in

reducing the reservoir of infected fleas.
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2.2 Mathematical Models

Mathematical modeling has proven to be a valuable tool in studying the

transmission dynamics of plague during past epidemics. Earlier epidemiologi-

cal models of the Black Death primarily focused on the spread of the disease

through commensal rats during a single outbreak. However, in this study, we

present a comparison of two models that consider both the rat-flea route and

human ectoparasite transmission.

Our main objective is to gain a comprehensive understanding of the

transmission dynamics of plague during European epidemics by applying these

models to six outbreak scenarios from the Second Pandemic. By analyzing

these outbreaks, we aim to identify the most appropriate model for each sit-

uation. Through this analysis, we can enhance our understanding of the in-

tricate mechanisms of plague transmission and its impact on the dynamics of

epidemics. By examining the different routes of transmission and their cor-

responding models, we can gain valuable insights into the factors influencing

the spread of the disease and its variations across different outbreaks.

2.2.1 Pneumonic Model

The pneumonic model in our study aims to depict the transmission

dynamics of the plague disease from one human to another. This model is built

upon the classical SIR framework, utilizing similar assumptions and employing

a set of differential equations (2.1, 2.2, and 2.3) to describe the dynamics

of the disease. The initial conditions for the model are defined by equation

1.2, providing the starting point for the simulation and analysis of plague

transmission.
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Figure 2.1: The pneumonic model is unique because it allows individuals to
transition between different categories without considering recovery phase. This
model specifically focuses on the human-to-human transmission of the bubonic
plague, a highly infectious disease caused by the bacterium Yersinia pestis.

dSh

dt
= −βp

ShIh
Nh

, (2.1)

dIh
dt

= βp
ShIh
Nh

− γpIh, (2.2)

dDh

dt
= γpIh (2.3)

The pneumonic model has three compartments for humans: Sh, Ih, and

Dh. The total human population is Nh = Sh + Ih. Recovered individuals are

not included in the model since untreated pneumonic plague has a very high

fatality rate. The transmission of pneumonic plague from human to human

occurs at a rate of βp. The disease-induced mortality rate is γp per day and is

equal to the inverse of the mean infectious period of pneumonic plague, which

is about 2.5 days [2].

2.2.2 Keeling-Gilligan RFT Model

Keeling and Gilligan developed a metapopulation model to study the

transmission dynamics of bubonic plague. This model incorporates 10 differ-

ential equations and focuses on the transmission of the disease from rodent
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epizootics to humans [20]. It provides a comprehensive representation of the

disease’s transmission dynamics, including the spillover effect. The spillover

effect is the transmission of the plague from its natural reservoir hosts, such

as rodents, to humans. It occurs when the bacterium Yersinia pestis, which

is responsible for causing the plague, is transmitted from infected animals to

humans, resulting in human cases of the disease.

By incorporating the spillover effect into their metapopulation model,

Keeling and Gilligan were able to capture the complex dynamics of disease

transmission between different populations. This comprehensive approach al-

lows for a better understanding of how the plague spreads from rodent popu-

lations to human populations and provides insights into the factors that con-

tribute to the disease’s persistence and spread in different environments.

Figure 2.2: The model is based on the Keeling-Gilligan Rat-Flea-Transmission
model, which takes into account both rat-flea and rat-human transmission. It
involves a continuous flow of individuals moving in and out of different com-
partments, thereby providing a more detailed and comprehensive representation
of the transmission dynamics.
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dH

dt
= rfH(1− H

Kf

) (2.4)

dF

dt
= (1− gr)γrIrH − dfF (2.5)

dSi

dt
= −βi

SiF

Ni

(1− e−aNi) (2.6)

dIi
dt

= βi
SiF

Ni

(1− e−aNi)− γiIi (2.7)

dRi

dt
= giγiIi (2.8)

dDi

dt
= (1− gi)γiIi (2.9)

For each sub-category, namely rats and humans, there are four com-

partments, denoted by Sr, Ir, Rr, and Dr for rats and Sh, Ih, Rh, and Dh

for humans. The rat population is assumed to be highly susceptible to the

disease, and we start with an entirely susceptible population of black rats

(Rattus rattus) [20]The infection is transmitted through infected fleas, which

are represented by the variable F . The infection mechanism involves infected

fleas randomly searching for a new rat host within a given time period. If an

infected flea encounters a susceptible rat, there is a probability, denoted by

βr, that the rat becomes infected. The parameter a measures the efficiency of

flea searching. Rats transition out of the infected class at a rate of γ−1
r , and a

fraction of them, denoted by gr, survive and become resistant, while the rest

die and release their infected fleas back into the environment.

The dynamics of the rat fleas are modeled by two variables, namely the

average number of fleas per rat (H) and the number of free infectious fleas

(F ) that are actively searching for a host. In the absence of bubonic plague,

the flea index H follows a logistic growth model, with a carrying capacity
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of Kf . The increase in the average flea index due to free fleas finding new

rat hosts is represented by the other term in the differential equation for H.

When an infected rat dies, free infected fleas are released into the environment,

releasing on average H fleas. Free fleas are assumed to die from starvation at

a rate of df [20]. The model also focuses on the human population, which is

divided into four compartments (Sh, Ih, Rh, and Dh), with a total population

of Nh = Sh+Ih+Rh. The birth and death rates are assumed to be independent

of population density [20].

2.2.3 Human-Ectoparasite Model (HET model)

The analysis of the model involves the use of seven differential equations

to describe the spread of bubonic plague through a human ectoparasite vector,

such as body lice or human fleas. Thus, transmission of bubonic plague via

these vectors is effectively modeled [2].
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Figure 2.3: The Human-Ectoparasite SIIRD Model can be represented using a
diagram that illustrates the flow of individuals in and out of each class. The
diagram shows an inward flow that results in a positive rate of change, while
an outward flow results in a negative rate of change. This flow diagram helps
to visualize how the model accounts for the movement of human population
between different categories, and how this movement contributes to the spread
of bubonic plague.

dSh

dt
= −βl

ShIl
Nh

, (2.10)

dIlow
dt

= βl
ShIl
Nl

− σbIlow, (2.11)

dIhigh
dt

= (1− gh)σbIlow − γbIhigh, (2.12)

dRh

dt
= ghσbIlow, (2.13)

dDh

dt
= γbIhigh, (2.14)

dSl

dt
= rlSl(1−

Nl

Kl

)− (βlowIlow + βhighIhigh)
Sl

Nh

, (2.15)

dIl
dt

= (βlowIlow + βhighIhigh)
Sl

Nh

− γlIl (2.16)

The model incorporates five compartments for humans that vary over

time: susceptible (Sh), infectious with mild bacteremia (Ilow), infectious with
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high bacteremia (Ihigh), recovered (Rh), and deceased (Dh). Additionally,

there are two compartments for vectors: susceptible (Sl) and infectious (Il).

The total living human population is determined by the sum of individuals in

the susceptible, low infectious, high infectious, and recovered compartments,

denoted as Nh = Sh + Ilow + Ihigh + Rh. Plague transmission from vectors

to humans occurs at a rate represented by βl. Humans are mildly infectious

for an average duration of 8 days. Individuals with mild bacteremia have

a recovery rate of approximately 40% (gh) in the case of untreated bubonic

plague. Moribund humans transmit plague to vectors at a high rate (βhigh)

for an average of 2 days [2].

The susceptible vector population grows at an intrinsic growth rate of

rl and is limited by the carrying capacity (Kl), which is determined by the

product of the parasite index and the number of human hosts (Nh). The in-

fection duration (γl) is, on average, 4.5 days for human fleas and 3 days for

body lice [2]. The model assumes that infected human fleas and body lice do

not recover, and the transmission of plague by human fleas is hypothesized to

occur through early phase transmission, an alternative to the blocked trans-

mission observed in rat fleas which refers to a temporary interruption of the

flea’s ability to transmit the Yersinia pestis bacteria to a new host. Due to the

short duration of outbreaks, the model does not consider natural births and

deaths in the human population [2].
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Parameter Value Definition
Humans
βlow U(0.001,0.05) Transmission rate for bubonic plague from

mildly infectious humans to body lice
βhigh U(0.001,1) Transmission rate for bubonic plague from

highly infectious humans to body lice
βp U(0.001,1) Transmission rate for pneumonic plague
βh U(0.001,0.2) (d) Transmission rate for bubonic plague from

rat fleas to humans
σ−1
b 8.0 (d) Average low infectious period for bubonic

plague
γ−1
b 2.0 (d) Average high infectious period for bubonic

plague
γ−1
p 2.5 (d) Average infectious period for pneumonic

plague
γ−1
h 10.0 (d) Average duration of infection for bubonic

plague
gh 0.4 Probability of recovery from bubonic plague
Lice (P. humanus
humanus)
rl 0.11 (per d) Natural lice growth rate
Kl 15.0 (per person) Lice index at carrying capacity
βl 0.05 Transmission rate for bubonic plague from

body lice to humans
γ−1
l 3.0 (d) Average infectious period for bubonic plague

Rats (R.rattus)
βr U(0.001,1) Transmission rate for bubonic plague from

rat fleas to rats
γ−1
r 5.2 (d) Average infectious period for bubonic plague

gr 0.1 Probability of recovery from bubonic plague
Fleas (X. cheopis)
rf 0.0084 (per d) Natural flea growth rate
Kf 6.0 Average number of fleas at carrying capacity
d−1
f 5.0 (d) Death rate of fleas

a 3.0
Sr(0)

Searching efficiency

Single numbers are fixed values and distributions (U=uniform) are priors [2].

Table 2.1: Utilizing parameters for the plague transmission from Dean et al.
work to show comparison [2].
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2.2.4 Lynch-Oster RFT Model

Logistic models play a crucial role in capturing the dynamics of rat

and flea populations within the context of studying bubonic plague transmis-

sion. These models are employed to describe the changes and interactions that

occur within these populations over time, providing a mathematical represen-

tation of their dynamics. By incorporating logistic equations into the modeling

framework, we gain valuable insights into the overall transmission dynamics

of bubonic plague.

The logistic model, a well-known mathematical framework, is particu-

larly suitable for studying population dynamics when resources or environmen-

tal factors limit growth. It considers the carrying capacity of the environment,

which represents the maximum population size that can be sustained. As the

population approaches this limit, growth slows down, resulting in a more re-

alistic representation of population dynamics.

In the context of bubonic plague, the logistic model allows for the explo-

ration of how rat and flea populations interact and influence the transmission

of the disease. Rats act as primary hosts for the bacteria Yersinia pestis,

while fleas act as vectors that transmit the bacteria between rats and poten-

tially to humans. Understanding the dynamics of these populations is crucial

for comprehending the epidemiology and spread of bubonic plague.

By incorporating logistic equations into the models, we can study the

growth and decline of rat and flea populations in response to factors such

as resource availability, predation, and disease transmission. These equations

provide a quantitative framework for examining how the population sizes of

rats and fleas change over time, and how these changes can impact the overall
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transmission dynamics of bubonic plague.

dRT

dt
= (

βR

KR

)RT (KR −RT )− σRC (2.17)

dRC

dt
= α

FC

FT

(RT −RC)−
βR

KR

(RT )(RC)− σRC − γRC (2.18)

dFT

dt
= (

βF

KF

)FT (KF − FT )− ρFT (2.19)

dFC

dt
= λ

RC

RT

(FT − Fc)− ρFC (2.20)

In the given set of equations, the variables RT and RC represent the

total population of rats and the population of rats that carry Y.pestis, respec-

tively. These equations capture the dynamics of the rat population in relation

to the transmission of plague. Similarly, the equations for the flea population

follow a similar structure, where the variables FT and FC represent the total

population of fleas and the number of contaminated fleas, respectively. These

equations describe the dynamics of the flea population in the context of plague

transmission.

Moving on to human dynamics, the SEIDR model (Susceptible, Ex-

posed, Infected, Recovered, Dead) is employed. This model accounts for dif-

ferent compartments in the human population and how individuals transition

between them based on the spread of the disease. Individuals move through

these compartments as they become exposed to the disease, progress to an

infectious state, die from the infection.
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Figure 2.4: In the Lynch-Oster model, the focus is on the population dynamics
of rats and fleas. The model accounts for the movement of individuals in and
out of each class using the SEIDR model.

dS

dt
= β(S +Rb)− σS FC

FT
− µS (2.21)

dE

dt
= σS FC

FT
− vE − µE (2.22)

dI

dt
= vE − ϕI − rI (2.23)

dR

dt
= rI − µRb (2.24)

dD

dt
= ϕI + µNh (2.25)

The SEIDRmodel is a compartmental model used to simulate the trans-

mission dynamics of bubonic plague. It comprises nine compartments, includ-

ing humans, rats, and fleas. The human compartments consist of susceptible

individuals (S), exposed individuals (E), infected individuals (I), recovered

individuals (R), and deaths (D). The rat compartments include total rat

population (RT ), contaminated rat population (RC), and flea compartments,

including flea population (FT ), contaminated flea population (FC), and deaths
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of rats. The model parameters include infection rates for rats and fleas (βR

and βF , respectively), carrying capacities of rats and fleas (KR andKF ), trans-

mission of the disease from contaminated rats to fleas (α), transmission rate

of fleas from contaminated rats to susceptible rats (λ), natural death rate of

the rat population (σ), and flea death rate (ρ) [21].

The model equations describe the flow of individuals between compart-

ments over time. Equations (2.17) and (2.18) represent the dynamics of the

rat population, while equations (2.19) and (2.20) describe the dynamics of

the flea population. Equation (2.21) represents the flow of susceptible hu-

mans into the exposed compartment, with the term σS FC

FT
representing the

transmission from infected fleas. Equation (2.22) describes the transition of

exposed humans to the infected compartment with the parameter v being the

transition rate. Equation (2.23) represents the flow of infected individuals into

the recovered compartment at a rate r, and a death rate of ϕ is assigned to

infected individuals, resulting in the transition of infected individuals to the

death compartment. Equation (2.24) represents the flow of recovered humans

out of the recovered compartment, while Equation (2.25) describes the deaths

of humans due to bubonic plague [21].
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Parameter Value Definition
Human
β U(0.001,1) Intrinsic birth rate
σ U(0.001,1) Chance of becoming infected from flea bite
µ U(0.001,1) Intrinsic death rate
v−1 U(0.25,10) (d) Incubation period of the disease
r−1 U(1, 100) (d) Rate of recovery from bubonic plague
ϕ−1 U(1, 100) (d) Death rate from bubonic plague
Rat
βR U(0.1,1) Intrinsic birth rate for rats
KR 1.5×Nh Carrying capacity for rats
δ U(0.001,1) Death rate from bubonic plague
α U(0.001,1) Infectivity of the plague from fleas to rats
γ U(0.001,1) Recovery rate for rats
Flea
βF U(10,100) Intrinsic birth rate for fleas
KF 6×KR Carrying capacity for fleas
ρ U(0.001,1) Death rate from bubonic plague
λ U(0.001,1) Infectivity of the plague from rats to fleas

Table 2.2: Parameters for the Lynch-Oster model

2.3 Result Methods

By applying various plague models, including the Pneumonic model,

Lynch-Oster RFT model, Keeligan Gilligan RFT model, and Human Ectopar-

asite model, to data from six different cities (Givry, Florence, Barcelona, Eyam,

Malta, and Moscow), we can gain valuable insights into how plague epidemics

evolve across different time periods and geographical locations. The dataset

used in this analysis contains information on daily disease-induced mortality

during the second outbreak in Europe, as outlined in Table 2.3. The dataset

was sourced from a Royal Society paper [22]. The models’ parameter values

and initial conditions employed for the analysis are provided in Table 2.1 and

2.2, respectively.

Fitting these models to the data allows us to estimate the model pa-

rameters that best fit the data for each city, evaluate the goodness of fit of
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the model for each city, and compare the dynamics of plague epidemics across

cities. The goodness of fit metrics such as the Bayesian Information Criterion

and root mean squared error will be used assess the accuracy of the model in

predicting the observed data. Furthermore, comparing the model parameters

and goodness of fit metrics across cities can reveal differences in the dynamics

of plague epidemics, such as variations in transmission rates, and flea ecol-

ogy. This information can inform public health policies and interventions for

controlling and preventing plague outbreaks in different regions.

Bayesian inference is used to fit deterministic models to the observed

data, estimating parameters that otherwise cannot be directly observed. The

models are fitted to daily mortality with a time-step of 1 day. The probability

of observing the data given the model parameters was calculated using a se-

ries of Poisson random variables. We estimate the transmission rates for each

model and the initial size of the primary host population that was at risk or in-

fected. Uniformly distributed priors were assumed, and posterior distributions

were obtained using MCMC simulations with an adaptive Metropolis-Hastings

algorithm. Convergence was assessed using the Gelman-Rubin statistic, and

model comparison was performed using the Bayesian information criterion.

The preferred model was the one with the lowest BIC value. The MCMC

simulations were run for 180, 000 iterations with a burn-in of 80, 000 iterations

and a thinning of 10. This means that 180,000 proposed values for the parame-

ters of interest were generated and evaluated using the acceptance probability.

However, the first 80,000 iterations were discarded as a burn-in period. In this

particular case, a burn-in of 80,000 iterations is applied, meaning that the first

80,000 proposed parameter values are discarded. After the burn-in period, the

remaining iterations (in this case, 100,000 iterations) are used to approximate
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the posterior distribution and obtain estimates of the model parameters. The

burn-in period is used to allow the Markov chain to reach its stationary distri-

bution, where the distribution of the parameter values converges to the true

posterior distribution. The first few iterations of the chain may not be repre-

sentative of the true posterior distribution and discarding them helps to ensure

that the final results are not biased. After the burn-in period, the remaining

100,000 iterations were thinned by a factor of 10. Thinning is used to reduce

autocorrelation in the chain by skipping some of the proposed values. Autocor-

relation occurs when the proposed values are highly correlated with each other,

which can slow down convergence to the true posterior distribution. Thinning

helps to reduce autocorrelation by keeping only every 10th proposed value, for

example, and discarding the rest. We estimate the basic reproductive number

was estimated in each model for the primary host using the next generation

matrix method. Lastly, reporting error was also considered by incorporating

a constant probability of reporting into the likelihood function, with different

levels of underreporting (10%, 25%, and 50%) for each outbreak [2].

Overall, fitting plague models to data from multiple cities using statis-

tical software packages such as “pymc” in Python can provide valuable insights

into the dynamics of plague epidemics and inform public health policies and

interventions. However, it is important to carefully interpret the results of the

model fitting and consider the assumptions underlying the models to ensure

that the results are valid and reliable.
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Location Date (MM/YYYY) Population Total recorded mortality
Givry, France 07/1348− 11/1348 1, 500 636
Florence, Italy 05/1400− 11/1400 60, 000 10, 215
Barcelona, Spain 04/1490− 09/1490 25, 000 3, 576
Eyam, England 06/1665− 11/1665 350 197
Moscow, Russia 07/1771− 12/1771 300, 000 53, 642

Island of Malta, Malta 04/1813− 11/1813 97, 000 4, 487

Table 2.3: A summary of mortality data during the Second Pandemic in six
major European cities. The Second Pandemic was a worldwide outbreak of
bubonic plague that occurred during the mid-19th century and is estimated to
have caused millions of deaths [2].

2.3.1 Describing Mathematical Models fits

This study utilized Bayesian Markov Chain Monte Carlo (MCMC)

analysis to fit four transmission models to mortality data from the Second

Pandemic outbreaks. The posterior means and 95% credible intervals for the

estimated parameters in each model can be found in Figure 2.5 and Table 2.4.

Among the four models, the Human Ectoparasite model showed a su-

perior fit to the observed mortality patterns in cities such as Givry, Florence,

and Barcelona, as evidenced by lower Bayesian Information Criterion (BIC)

values. Similarly, the Lynch-Oster model provided a better fit to the mortality

data in cities like Moscow and Malta, where the presence of two peaks was

observed. This finding aligns with Dean et al.’s paper, which also highlighted

the irregularities in Moscow and Malta that were effectively captured by the

Lynch-Oster model. Notably, the Lynch-Oster model also demonstrated a

good fit for cities like Florence and Barcelona.

In the case of the Eyam outbreak, the Pneumonic model exhibited

a lower BIC compared to the other models, indicating a better fit to the

observed data. However, distinguishing between the models for smaller out-

breaks such as Eyam and Givry is challenging due to the overlapping credible
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intervals, making visual differentiation difficult. Interestingly, the Keeligan-

Gilligan model had the highest BIC value and demonstrated poor fit to the

observed data among the four models, suggesting that it could not adequately

capture the dynamics of bubonic plague transmission.

It is important to note that while the plague outbreak was analyzed

using daily data, some parameter values in the Pneumonic model and Keeligan-

Gilligan model were adjusted to replicate the results presented in Dean et al.’s

paper. This adjustment aimed to ensure consistency between the simulated

outcomes and the findings of the previous study, maintaining the integrity of

the analysis.
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Figure 2.5: The mortality data from the Second Pandemic outbreaks is being
fitted to four models of plague transmission: Lynch-Oster (red), Pneumonic
(blue), Keeling-Gilligan (green), and Human-Ectoparasite (orange). The ob-
served data is displayed as black dots, while the fitted models are represented
by mean values with 95% credible intervals. These models are being applied to
mortality data from six European cities, offering insights into the dynamics of
plague transmission in different time periods.
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City Year Model BIC ∆BIC RMSE
Givry 1348 Pneumonic Model 1332.4867 54.7370 3.2642

Keeling-Gilligan 1292.0497 14.4008 3.0912
Lynch-Oster RFT 1326.3366 48.5877 2.9553
Human-Ectoparasite 1277.7489 0 3.0652

Florence 1400 Pneumonic Model 3453.4082 674.7627 31.3240
Keeling-Gilligan 13410.7304 10632.0849 21.3570
Lynch-Oster RFT 4771.4387 1992.7932 11.7413
Human-Ectoparasite 2778.6455 0 15.5567

Barcelona 1490 Pneumonic Model 2480.6936 434.0678 8.1350
Keeling-Gilligan 3087.5268 1040.901 10.6453
Lynch-Oster RFT 2110.0267 63.4009 4.8484
Human-Ectoparasite 2046.6258 0 4.8730

Eyam 1665 Pneumonic Model 1189.9853 0 1.0084
Keeling-Gilligan 1324.1347 134.1521 1.1387
Lynch-Oster RFT 1219.6203 29.6350 1.0445
Human-Ectoparasite 1194.5295 4.5442 1.1252

Moscow 1771 Pneumonic Model 7856.1234 3667.1689 116.2605
Keeling-Gilligan 18778.3554 14589.4009 172.0217
Lynch-Oster RFT 4188.9545 0 70.6026
Human-Ectoparasite 5620.3103 1431.3558 89.6410

Malta 1813 Pneumonic Model 3066.4463 627.361 10.6540
Keeling-Gilligan 7348.4848 4909.3995 20.4968
Lynch-Oster RFT 2439.0853 0 6.1668
Human-Ectoparasite 2547.3111 108.2258 7.8805

Table 2.4: Comparison of transmission models and posterior estimates for
different plague models and outbreaks

2.3.2 Examining role of exposed group in Lynch-Oster

model

In this section, we explore the impact of including an additional ex-

posed compartment in the Lynch-Oster model. This compartment accounts

for the delay period between exposure and the onset of infectiousness. We

examine whether this addition improves the model fit. The SEIRD model,

which incorporates the exposed compartment and a compartment for individ-

uals who have died from the disease, is compared to a simplified SIRD model

without the exposed compartment. Our aim is to assess the influence of the
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exposed compartment on the duration of the epidemic and the spread of the

disease, while considering the possibility of overfitting.

Comparisons were made between the Lynch-Oster model and other

models, including the Human Ectoparasite model, the Pneumonic model, and

the Keeligan-Gilligan model, using the Bayesian Information Criterion (BIC).

The results revealed that the Lynch-Oster model exhibited relatively lower

BIC values, indicating a better fit and providing stronger support for the

transmission dynamics of the outbreaks. Figure 2.6 and Table 2.5 present

the results, showing that the two models generally yield similar outcomes.

However, in Moscow, the SEIRD model had a slightly higher BIC value, and

for Malta, the SEIRD model demonstrated a slightly better fit. Overall, the

comparison did not indicate any evidence of overfitting due to the inclusion of

the exposed group in the Lynch-Oster model.
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Figure 2.6: Fitting the SIRD that examines the role of exposed group and
SEID in lynch-oster model of plague transmission to mortality during second
pandemic outbreaks. The observed human mortality data (black dots) and the
fit (mean and 95% credible interval) of the two models for plague transmission
[SIRD (blue) and SEIRD (red)] for six plague outbreaks
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City Year Model BIC ∆BIC RMSE
Givry 1348 SIRD 1321.6421 0 2.9401

SEIRD 1322.3741 0.832 2.9553
Florence 1400 SIRD 5003.8469 0 11.6460

SEIRD 5055.1415 51.2946 11.7413
Barcelona 1490 SIRD 1992.9112 0 4.8474

SEIRD 2004.5422 11.631 4.8484
Eyam 1665 SIRD 1212.9198 0 1.0438

SEIRD 1222.0041 9.0843 1.0445
Moscow 1771 SIRD 5009.6170 201.9172 73.9805

SEIRD 4807.6998 0 70.6026
Malta 1813 SIRD 2438.8950 2.2840 6.1577

SEIRD 2463.6110 0 6.1668

Table 2.5: In order to examine the role of the exposed group in the Lynch-
Oster model for different plague outbreaks, we compared the fit of the SIRD
and SEIRD models using the BIC measure.

2.4 Discussion

The findings of our study support the notion that both rodent and

human transmission contributed to the spread of bubonic plague during the

Second Pandemic. The Lynch-Oster RFT model, which incorporates both

modes of transmission, demonstrated a superior fit to the observed mortality

patterns compared to other models considered. This suggests that rodents,

particularly rats, may have played a significant role in the transmission dy-

namics of the disease.

The inclusion of an exposed compartment in the Lynch-Oster model,

representing the delay period between exposure and infectiousness, did not re-

sult in substantial improvements in model fit or overfitting. This indicates

that the simpler version of the model, without the exposed compartment

(SIDR model), provided comparable results in certain cases, such as Eyam

and Givry. These findings suggest that the inclusion of an exposed compart-
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ment may not always be necessary to accurately capture the transmission

dynamics of bubonic plague during the Second Pandemic.

However, it is important to acknowledge the limitations and uncertain-

ties associated with modeling infectious diseases. Our study was based on

specific assumptions and available data, which may introduce inherent biases.

Different modeling approaches and parameterizations may yield alternative re-

sults, and therefore, the choice of model should consider not only the goodness

of fit but also biological plausibility and prior knowledge about the disease.

The contradiction with Dean et al.’s paper highlights the complexity of

modeling plague transmission and underscores the need for further research.

Divergent findings among studies may arise due to variations in data sources,

model assumptions, or methodological approaches. To gain a more comprehen-

sive understanding of the transmission dynamics during the Second Pandemic,

additional data are needed. This includes information on ecological factors

that affect rodent populations, the dynamics of ectoparasites, and detailed

historical records that provide insights into human behavior and movement

patterns.

In conclusion, our study suggests that both rodent and human trans-

mission likely played a role in the spread of bubonic plague during the Second

Pandemic. The Lynch-Oster model, which incorporates both modes of trans-

mission, demonstrated a better fit to the observed mortality data compared

to other models considered. Nevertheless, further research and data collec-

tion are necessary to validate and refine these findings. By addressing the

remaining uncertainties in modeling plague transmission, we can enhance our

understanding of this historical pandemic and improve our preparedness for
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future outbreaks of similar infectious diseases.
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Chapter 3

Analysis of the Hypothesis of

Endemic Stability: Polio and

Covid-19

This chapter explores the concept of endemic stability, which refers to

a situation where a population maintains a high prevalence of infection while

experiencing a low incidence of clinical disease. To enhance our understand-

ing of endemic stability, we utilize sophisticated models that consider various

factors, such as immunity, partial immunity, and the absence of immunity

dynamics.

Our models are specifically designed to investigate endemic stability

using both single and two age classes. In the two-age class model, we fo-

cus on distinguishing between children and adults within the population. By

separately analyzing these two distinct age groups, we can gain a more compre-

hensive understanding of how endemic stability manifests in different segments

of the population.
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To accurately represent real-world scenarios, our models incorporate

the dynamics of immunity, including birth and natural deaths, while track-

ing the progression of individuals who have been infected with the disease.

By studying the transition from infection to recovery, we enhance our com-

prehension of how the disease spreads within the population and evaluate

the long-term implications of achieving endemic stability. For example, these

models can be applied to analyze the dynamics of diseases like polio, where

understanding the progression from infection to recovery is crucial.

Furthermore, our models incorporate partial immunity and account for

the absence of immunity dynamics, which are essential for accurately capturing

the interplay between susceptible individuals, infected individuals, and those

who have recovered from previous infections but may still be susceptible to

subsequent infections. This aspect is particularly relevant for analyzing dis-

eases such as COVID-19, where immunity may decline over time, potentially

leading to reinfection.

By utilizing these advanced modeling techniques, our primary objective

is to gain insights into the necessary conditions and factors that contribute

to the establishment of endemic stability. Through hypothesis testing and

analysis, we aim to uncover the underlying mechanisms and prerequisites for

maintaining a population with a high prevalence of infection while minimizing

the incidence of clinical disease. This research will contribute to a better

understanding of disease dynamics and provide valuable insights for effectively

managing and controlling endemic diseases.
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3.1 Hypothesis of Endemic Stability

In this section, we examine the hypothesis introduced by the authors

of “Endemic stability, a veterinary idea applied to human public health” [23]

and apply it to the analysis of Polio and Covid-19. Although the concept

of endemic stability was initially developed in veterinary medicine to explain

tick-borne diseases in cattle, it has also been extended to human infectious

diseases such as malaria and rubella.

One of the key concerns discussed in the paper is the potential unin-

tended consequences of reducing the force of infection through interventions

like insecticide-treated nets for malaria control. The authors draw parallels

with veterinary medicine, where interventions targeting tick-borne diseases

have been associated with increased mortality rates. To address this concern,

the authors propose a mathematical model that can be generalized to all dis-

eases exhibiting endemic stability.

If this proposed model holds true, it could have significant implications

for public health interventions aimed at controlling infectious diseases. Un-

derstanding the dynamics of endemic stability and its potential consequences

could help inform decision-making and optimize the design and implementa-

tion of interventions to ensure the most effective and safe outcomes.

According to the authors, there are two necessary criteria for endemic

stability: (1) the disease is more likely or severe in older individuals, and (2)

initial infection reduces the likelihood of subsequent infections or the likelihood

that subsequent infections will lead to disease [23]. They use a simple model

to illustrate endemic stability, which involves an equation for the age-specific

disease incidence.
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dI

dt
= λS

such that,

Ia = λpae−λa,

where λ is the force of infection, pa is the probability that infection at

aged a causes disease (where pa ≤ 1), and p is a constant greater than zero

that determines the shape of the age-specific incidence curve.
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Figure 3.1: The relationship between age and disease incidence can be described
by the force of infection, denoted as λ, where a value of λ = 2 indicates a high
likelihood of infection. The likelihood of an infection causing disease can be
varied by 0.01, 0.02, and 0.03 to observe its impact on the force of infection.

The authors further derive an index of the overall disease incidence as a
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function of λ for a1 = 0, a2 = 2, and different values of p (power of infection).

The overall disease incidence is given by:

∫ a=a2

a=a1

λpae−λa =
p

λ
–2pe−2λ − pe−2λ

λ
.
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Figure 3.2: Variation in overall disease incidence with force of infection.

The model presented in Figure 3.2 provides insightful observations re-

garding endemic stability and its association with disease incidence and the

force of infection. The model illustrates that as the force of infection increases,

the overall disease incidence initially rises. At an intermediate level of infec-

tion, it reaches a peak, and subsequently, it declines at higher levels of the force
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of infection. This pattern signifies that when the infection rate is high, there is

a substantial population of infected individuals. Consequently, when the power

of infection is low, only a small number of individuals become symptomatic,

resulting in a lower peak of disease incidence observed in the solid blue curve.

Conversely, with an increased power of infection, a relatively higher number

of individuals are expected to experience the disease, as demonstrated by the

dotted black curve.

The implications drawn from the model suggest that implementing par-

tial control measures when the force of infection is already high (positioned

to the right of the peak in disease incidence) may lead to an unexpected out-

come. Instead of reducing disease incidence, partial control measures could

potentially result in an increase in clinical disease within the population. This

finding emphasizes the importance of carefully considering the consequences

of partial control measures in the context of endemic stability.

These model results have significant implications for public health in-

terventions. When dealing with diseases that exhibit endemic stability, it is

crucial to adopt a comprehensive approach in designing and implementing

interventions. Simply reducing the force of infection without implementing

comprehensive measures may not lead to the desired reduction in clinical dis-

ease. Therefore, a holistic and strategic approach is necessary to effectively

manage, and control diseases characterized by endemic stability.

The primary objective of this study is to conduct a comprehensive in-

vestigation and evaluation of two hypotheses proposed in the paper ”Endemic

stability - a veterinary idea applied to human public health” [23]The first hy-

pothesis suggests that the power of infection (p) increases with age, indicating
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a higher likelihood of infection progressing to a symptomatic state as indi-

viduals advance in age. The second hypothesis proposes that the power of

reinfection (pr) is lower than that of primary infections (p), indicating a de-

creased probability of clinical disease among individuals who have previously

been infected. The second hypothesis also suggests that λr < λ, which we do

not examine in this study.

To test the first hypothesis, we utilize both single and two age class

SIRD (Susceptible-Infectious-Recovered-Diseased) models with a specific focus

on immunity dynamics. These models will allow us to explore the consequences

of the power of infection differing across different age groups.

Furthermore, we will extend the SIRD model to include scenarios of

both absence of immunity and partial immunity to investigate the second

hypothesis. This expanded model will enable us to analyze the power of rein-

fection (πr) in comparison to primary infections (π).

The findings and results obtained from these models will be carefully

analyzed and compared to assess the validity of the hypotheses. By examining

the conditions under which these hypotheses hold, our study aims to gain a

deeper understanding of the underlying mechanisms contributing to endemic

stability.



63

3.2 Immunity: Polio

3.2.1 Overview of Polio Disease

Background of Polio

Polio is caused by the highly contagious Poliovirus, which belongs to

the Picornaviridae family and is a type of Enterovirus. The virus mainly

affects the motor neurons, which are responsible for transmitting messages

between the muscles and the brain [24]. Humans are the only natural hosts of

Poliovirus, although it can also infect monkeys if injected directly into their

central nervous system (CNS). When ingested orally, the virus multiplies in

the gut lining and then spreads to the bloodstream, eventually invading the

CNS and replicating in the motor neurons [25]. The incubation period for

poliovirus ranges from 2 to 35 days, and the virus is typically shed in stool 3

to 5 days after infection. It is believed that the virus may spread through the

afferent nerve pathways in the brain, leading to damage and destruction of the

anterior horn cells in the spinal cord and resulting in limb paralysis [26]. Polio

is a life-threatening disease that can cause permanent disability.

Polio is an ancient disease that has been around for over 1000 years [24].

The earliest identifiable reference to paralytic poliomyelitis dates back more

than 3500 years to an Egyptian stone engraving depicting a young man crip-

pled by the disease [24]. In the 1800s, polio was relatively uncommon and

spread at a low rate. During the 1890s, developed countries saw significant

advancements in their standard of living, which some researchers believe made

it easier for the virus to spread and lead to epidemics. Improved hygiene prac-

tices may have made more people susceptible to the virus, as fewer individuals
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were exposed to it at a young age. In the past, poor sanitation meant that

infants were highly exposed to polio, but their immune systems were aided by

maternal antibodies that quickly defended against the virus.

The emergence of polio can be traced back to the year 1916 when

the first cases were reported in New York City, United States. During that

outbreak, there were more than 27,000 reported cases of polio, and tragically,

it resulted in over 6,000 fatalities [26]. However, the development of effective

vaccines in the mid-20th century helped reduce the incidence of polio, and

the global polio eradication initiative launched in 1988 further reduced wild

poliovirus cases by over 99%. As a result, the majority of countries in the

world declared themselves polio-free, but Pakistan and Afghanistan remained

endemic for wild poliovirus [27]. Despite these efforts, there have been recent

outbreaks of wild poliovirus in countries such as Malawi, Afghanistan, and

Pakistan.

Polio is a highly contagious disease that primarily affects children under

the age of 5 years old but can also infect unvaccinated or partially vaccinated

adults. There are three types of poliovirus, namely types I, II, and III, and

individuals who are not fully vaccinated are at a higher risk of contracting

any of these three types. In September 2022, an unvaccinated adult in New

York was found to have contracted poliovirus, and a paralyzed 3-year-old girl

was found with wild polio in Malawi. Tests confirmed that the virus was sim-

ilar to the type circulating in Singh province in Pakistan, indicating that the

circulation of poliovirus from endemic countries has not stopped [28]. These

recent cases underscore the importance of continued efforts to eradicate polio

and ensure vaccination coverage to prevent further outbreaks.
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Polio Transmission

Poliovirus is a contagious disease that spreads through contact with

infected stool, water droplets from coughs or sneezes of an infected person,

and contaminated water or food [24]. The virus multiplies in the intestine

and can invade the nervous system, causing paralysis, especially in areas with

poor sanitation [26]. The virus tends to propagate more rapidly among the

nonimmune population during the summer seasons in temperate regions [26].

Most cases of polio present as mild illnesses symptoms, with only about

1% − 2% of infected individuals becoming paralyzed [24]. Paralytic polio

occurs when the virus enters the bloodstream and attacks nerve cells, and in

some cases, infected individuals may develop throat and chest paralysis [24].

Infected persons can spread the virus to others immediately before and up to

two weeks after symptoms appear.

Symptoms and Recovery of Polio Disease

According to the Centers for Disease Control and Prevention (CDC),

around 72 out of 100 people who contract poliovirus do not display any visible

symptoms, while 1 out of 4 individuals may experience flu-like symptoms,

such as fever, fatigue, headache, vomiting, stiffness in the neck, and pain in

the limbs, which typically last between 2 to 5 days [29]. However, individuals

with weakened immune systems may develop more severe symptoms that affect

the brain and spinal cord, such as paresthesia, meningitis, and paralysis [30].

The virus enters the body through the mouth, multiplies in the intes-

tine, and can invade the nervous system [24]. In up to 90% of cases, polio

infection causes no symptoms or mild symptoms that go unnoticed [29]. Some
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patients may recover completely from initial symptoms, which usually last be-

tween 2 to 10 days. However, in a small proportion of cases, the virus can

cause paralysis, often of the legs, which can be permanent and may occur as

quickly as within a few hours of infection. Approximately 5 − 10% of those

who experience paralysis due to polio may die from immobilization of their

breathing muscles [30]. Even children who fully recover from polio infection

may experience new muscle pain, weakness, or paralysis as adults, usually

between the ages of 15 to 40 years [29].

Vaccination of Polio Disease

Poliovirus exposure or infection can provide immunity, but it is not a

guaranteed protection against all three types of poliovirus. It is possible for a

person to be exposed to or infected with one type of the virus and still contract

another type.

There are two types of polio vaccines: the inactivated poliovirus vaccine

(IPV) and the oral poliovirus vaccine (OPV). IPV was developed by Jonas Salk

in the 1950s and is administered by injection in the leg or arm, depending on

the age of the patient. OPV was developed by Albert Sabin and is given

orally. The introduction of IPV in the 1950s led to a significant decrease in

polio cases, and by 1994, most developed countries had eliminated polio. By

2000, Western countries had declared themselves polio-free, demonstrating the

significant role of the vaccine in eradicating poliovirus [31].

Both types of vaccines have been shown to be highly effective against

all three types of poliovirus. However, they work differently. IPV provides

serum immunity to all types of poliovirus and protects against paralysis. OPV
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also provides serum immunity to all types of poliovirus and protects against

paralysis, but it also prevents the virus from spreading to the nervous system.

The oral polio vaccine (OPV) elicits an immune response within the intestinal

mucous membrane, which serves as the main location for the replication of the

poliovirus. Almost all children (99 out of 100) who receive all the recommended

doses of IPV will be protected from polio. To be fully vaccinated, a person

needs to receive all the recommended doses of either IPV or OPV [30].
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3.2.2 Mathematical Models

This chapter focuses on studying the dynamics of disease spread in re-

lation to polio, with a particular emphasis on considering population factors

such as birth and death processes. We examine both single and two age SIRD

(Susceptible-Infectious-Recovered-Diseased) models to explore the presence of

endemic stability and gain a deeper understanding of the conditions that give

rise to this phenomenon. Additionally, we aim to investigate the hypothesis

that the power of infection (π) increases as age class advances, suggesting a

higher probability of infection progressing to a symptomatic state with in-

creasing age.

Based on data provided by the CDC (Centers for Disease Control and

Prevention), we observe that approximately 70% of children infected with

polio remain asymptomatic, while only around 5% develop paralysis. This

information indicates that children have a lower risk of experiencing paralysis

when infected with polio, suggesting a lower power of infection compared to

adults. An important observation is that individuals who contract polio at a

young age tend to recover quickly and acquire immunity. On the other hand,

adults who have not previously been infected are more susceptible to paralysis

if they contract the virus.

To account for the heterogeneity within the population, we incorporate

an immunity model. This model takes into consideration that not all individ-

uals have the same likelihood of becoming infected with polio, particularly at

a young age. Some individuals may never experience an infection, while others

may contract the virus later in life. By considering these variations, we obtain

a more realistic understanding of the disease dynamics and the potential for
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endemic stability.

Moving on to the construction of the single age class model, our aim

is to delve further into these immunity dynamics and analyze the necessary

conditions for the presence of endemic stability. By examining the interactions

between susceptible, infectious, recovered, and diseased individuals, we can

assess how the disease spreads and persists within the population. Through

this analysis, we strive to uncover the contributing factors and parameters

that influence the establishment of endemic stability in the context of polio.

A. Single Age Class Model with Immunity

In our analysis, we are utilizing a single age class model that considers

the entire population and incorporates the occurrence of births and deaths.

This model follows the SIRD (Susceptible-Infectious-Recovered-Diseased) flow,

which represents the possible transitions individuals can undergo during the

course of the disease. The model consists of four compartments: Susceptible

(S), Infectious (I), Recovered (R), and Diseased (D). These compartments

represent the different states an individual can be in with respect to the disease.

The flow of the model, as depicted in Figure 3.3, illustrates the tran-

sitions between the compartments. Initially, individuals in the population are

classified as susceptible (S), meaning they are at risk of contracting the dis-

ease. When a susceptible individual comes into contact with an infectious

individual, they become infected and move to the infectious compartment (I),

where they have the potential to transmit the disease to others.

Over time, individuals in the infectious compartment may recover from

the disease and move to the recovered compartment (R), indicating that they
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have developed immunity and are no longer capable of transmitting or getting

the disease. However, some individuals in the infectious compartment may

experience more severe outcomes and move to the diseased compartment (D),

representing those who have suffered from the disease and are not able to

recover.

To account for the occurrence of births and deaths within the popu-

lation, we incorporate birth and death rates into the model. The birth rate

represents the rate at which new individuals enter the population, while the

death rate represents the rate at which individuals in the population pass away

due to natural causes.

The mathematical equations shown in (3.1, 3.2, 3.3, and 3.4) govern the

transitions between the compartments and capture the dynamics of the disease,

births, and deaths within the population. By analyzing these equations and

simulating the model, we can study the behavior of the system, explore the

impact of births and deaths on the spread of the disease, and investigate the

conditions necessary for achieving endemic stability.



71

Figure 3.3: This visual representation showcases the movement of individuals
between compartments (Susceptible, Infected, Recovered, and Diseased) in the
single age class model with immunity. The arrows represent the flow of in-
dividuals, while the associated rates illustrate the probabilities of transitioning
between compartments. The model takes into account the effects of births and
natural deaths, allowing for a thorough analysis of disease dynamics and its
interplay with population changes. By examining these transitions, the model
offers valuable insights into the progression of diseases and the impact of im-
munity on population health.

dS

dt
= µN − (µ+ λ

I

N
)S, (3.1)

dI

dt
= λS

I

N
− ρ(γ + π)I − µI, (3.2)

dR

dt
= ργI − µR (3.3)

dD

dt
= ρπI − µD (3.4)

The system of equations comprises four differential equations that char-

acterize the behavior of the single age class SIRD model incorporating birth

and death processes. The total population is represented by the sum of the
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compartments: N = S + I +R +D

The rate of change of susceptible individuals (S) over time (t) is de-

termined by a balance between the birth rate and total population (µN), the

impact of disease transmission over the entire population (λ I
N
), and natural

death (µS) within the susceptible population.

The rate of change of infected individuals (I) with respect to time (t)

is influenced by the infectious rate (λ I
N
), the likelihood of infection progress

to asymptomatic state (ργI), likelihood of infection progress to symptomatic

state (ρπI), and deaths (µI). This equation captures the flow of individuals

transitioning into the infectious state through disease transmission, their re-

covery (asymptomatic), progression to disease (symptomatic), and the impact

of natural death.

The rate of change of recovered individuals (R) with respect to time

(t) is determined by the likelihood of infection progress to asymptomatic state

(ργI) and deaths (µR). It represents the flow of individuals recovering from

the disease and those who have passed away due to natural death.

Lastly, the rate of change of diseased individuals (D) over time (t) is

influenced by the likelihood of infection progress to symptomatic state (ρπI)

and deaths (µD). This equation accounts for the flow of individuals who have

experienced the disease and subsequently passed away from natural death.

These equations describe the interplay and transitions between the dif-

ferent compartments (susceptible, infected, recovered, and diseased) while in-

corporating the effects of births, deaths, disease transmission, recovery (asymp-

tomatic), and disease (symptomatic) within the population. By solving these

equations, we can analyze the dynamics of the disease, examine the impact
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of various parameters on the system, and explore the conditions required for

endemic stability.

Examining Force of infection and Disease incidence of Single Age

Class model with Immunity

To further analyze the dynamics of the model, we can calculate im-

portant epidemiological measures such as the force of infection and disease

incidence. The force of infection represents the rate at which susceptible indi-

viduals become infected, and it is given by:

F =

∫ T

0

(λI)dt

We normalize the force of infection by dividing it by the product of

the total population (N) and the length of the time period (T ) gives us the

average force of infection as shown in Equation 3.5.

F̃ =

∫ T

0
(λI)dt

NT
(3.5)

On the other hand, the disease incidence measures the number of new

cases that become symptomatic within a given time period. It is calculated

by integrating the product of the disease-induced mortality rate (ρπ) and the

number of infected individuals (I) over the time period, and then normalizing

it by dividing by the product of the total population (N) and the length of
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the time period (T ) as shown in equation 3.6

D̃ =

∫ T

0
(ρπI)dt

NT
(3.6)

Identifying Steady States

To analyze the steady states of the SIRD with immunity model, we

focus on two equilibrium points: the disease-free equilibrium and the disease-

endemic equilibrium.

At the disease-free equilibrium, where the infected population (I) is

zero, such that susceptible population (S) = (ρ(γ+π)+µ)N
λ
. This equilibrium

represents the eradication of the disease, where no individuals are infected.

The disease-endemic equilibrium occurs when the infected population

is non-zero. To find this equilibrium, we solve for the value of I by setting

∂S
∂t

= 0. This leads to the equation:

µN − µS − λ
I

N
S = 0

Simplifying and substituting the value of S, we have:

µN − µρ
N

λ
(γ + π)− µ2N

λ
–I(ρ(γ + π) + µ) = 0

Solving for I, we obtain the steady state at the disease-endemic equi-

librium:

I =
µN − µρ

N
(γ + π)− µ2N

λ

ρ(γ + π) + µ

Therefore, we assume that I∗ = I, then force of infection is redefine as:
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F ≈ λI∗ = λ
µN − µρ

N
(γ + π)− µ2N

λ

ρ(γ + π) + µ

Additionally, the disease incidence rate is redefined as:

D ≈ ρπI∗ = ρπ
µN − µρ

N
(γ + π)− µ2N

λ

ρ(γ + π) + µ

B. Age Structure Model with Immunity

In this chapter, we extend our analysis to a two-age class model that

takes into account the population division between children (0 - 2 years) and

adults (2+ years). This model incorporates the occurrence of births and

deaths and follows the SIRD flow, allowing for transitions between the differ-

ent age classes. The compartments in this model are represented by variables

Sc, Ic, Rc, Dc for children and Sa, Ia, Ra, Da for adults.

Figure 3.4 illustrates the structure of the model and its corresponding

parameters. Similar to the single age class model, adults give birth to newborns

who are initially classified as susceptible, placing them at risk of contracting

the disease. After two years, children transition to the adult age class and

become more susceptible to developing symptoms when infected with the virus.

In this two-age class model, we assume that the birth and death rates

are equal, indicating that the population is experiencing a balance between

births and deaths. The mathematical equations shown in (3.7, 3.8, 3.9, 3.10,

3.11, 3.12, 3.13, and 3.14) govern the transitions between the compartments

and capture the dynamics of the disease, births, and deaths within the popu-

lation.

By utilizing this two-age class model and considering the interplay be-
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tween children and adults, we can gain a deeper understanding of how the

disease spreads and impacts different age groups. The equations provide a

framework for studying the disease dynamics, birth and death rates, and the

transitions between compartments.

Figure 3.4: This illustrative flowchart displays the transitions between com-
partments (Susceptible, Infected, Recovered, and Diseased) in the age struc-
ture model with immunity. The arrows symbolize the movement of individuals,
and the associated rates represent the probabilities of transitioning between
compartments. Additionally, the model incorporates the effects of births and
deaths on the population, contributing to a more accurate representation of
disease dynamics and its interplay with population dynamics. By examining
these transitions, the model enables an in-depth analysis of disease spread and
the impact of age-specific factors on population health.
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dSc

dt
= µN − λ

Ic
N
Sc − µSc − δSc (3.7)

dSa

dt
= −λ

Ia
N
Sa − µSa + δSc (3.8)

dIc
dt

= λ
Ic
N
Sc − ρ(γc + πc)Ic − µIc − δIc (3.9)

dIa
dt

= λ
Ia
N
Sa − ρ(γa + πa)Ii − µIa + δIc (3.10)

dRc

dt
= ργcIc − µRc − δRc (3.11)

dRa

dt
= ργaIa − µRa + δRc (3.12)

dDc

dt
= ρπcIc − µDc − δDc (3.13)

dDa

dt
= ρπaIa − µDa + δDc (3.14)

The given system of equations represents a disease spread model in a

population consisting of two age classes: children and adults. It incorporates

four compartments for each age class: susceptible population (Sc,a), infected

population (Ic,a), recovered population (Rc,a), and diseased population (Dc,a).

The total population is divided into children (Nc) and adults (Na), with the

overall population denoted as (N = Nc +Na).

This model extends the previous single age class model by introducing

the transition rate between age classes. Specifically, individuals transition

from the child age class to the adult age class when they reach the age of two,

governed by the transition rate δ. Consequently, the population of children

decreases while the population of adults increases.

By incorporating separate age classes and their transitions, this model

provides a more comprehensive understanding of disease dynamics in the pop-
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ulation. It allows us to analyze the influence of age-specific factors on disease

spread, recovery, and infection rates. However, this model assumes that new

births depend on the entire population, including children being able to give

birth. This assumption deviates from reality. To address this limitation, we

refine the model to better mimic the real world.

In our refined model, we consider that new births depend only on the

adult population. Additionally, we assume that children do not experience

deaths at a young age, meaning the death rate for children is set to zero.

Furthermore, we assume that the birth rate is equal to the adult death rate

(µ = δNc

Na
), which is determined by the transition rate between age classes

and the ratio of the children population (Nc) to the adult population (Na).

These refinements make the model more realistic and aligned with real-world

dynamics.

dSc

dt
= µNa − λ

Ic
N
Sc − δSc

dSa

dt
= −λ

Ia
N
Sa − µSa + δSc

dIc
dt

= λ
Ic
N
Sc − ρ(γc + πc)Ic − δIc

dIa
dt

= λ
Ia
N
Sa − ρ(γa + πa)Ii − µIa + δIc

dRc

dt
= ργcIc − δRc

dRa

dt
= ργaIa − µRa + δRc

dDc

dt
= ρπcIc − δDc

dDa

dt
= ρπaIa − µDa + δDc
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Examining Force of infection and Disease incidence of Age structure

model with Immunity

The calculation of the force of infection and disease incidence in the two-

age class model takes into account the dynamics of both children and adults

within the population. These metrics provide insights into the transmission

intensity and disease burden in each age class.

The force of infection (F ) represents the rate at which susceptible in-

dividuals become infected. It is calculated by summing the contributions of

infected individuals from both age classes over a specific time interval. The

force of infection can be determined by integrating the product of the trans-

mission rate (λc,a) and the number of infected individuals (Ic,a) over time:

F =

∫ T

0

(λcIc + λaIa)dt

To further assess the transmission intensity and the risk of infection

within the population in a standardized manner, we can normalize the force

of infection to obtain the average force of infection. This measure provides

a relative assessment of the overall transmission intensity, accounting for the

population size.

The average force of infection (F̃ ) is obtained by dividing the integral

of the force of infection (F ) over a specific time interval by the product of the

population size (N) and the duration of the observation period (T ):

F̃ =

∫ T

0
(λcIc + λaIa)dt

NT
(3.15)

Similarly, the disease incidence (D̃) quantifies the rate of new disease
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(symptomatic) cases in the population. It accounts for the contributions

of symptomatic infections in both age classes over a specific time interval.

The disease incidence is calculated by integrating the product of the disease-

induced mortality rate (ρπc,a) and the number of infected individuals (Ic,a)

over time:

D̃ =

∫ T

0
ρ(πcIc + πaIa)dt

NT
(3.16)

Here, N represents the total population size, and T denotes the total

duration of the observation period.

Variable Description unit
λ Infection rate of susceptible population 1

people*days

µ Birth and Death rate 1
days

π Likelihood of infection progress to symptomatic state (Power of infection) 1
days

γ = (1− π) Likelihood of infection progress to asymptomatic state 1
days

ρ Timescale that Infections are contagious 1
days

δ Transition rate between age groups 1
days

t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered (asymptomatic) people people
D Number of disease (symptomatic) people people
N Total number of people people

Table 3.1: This table presents the units associated with the variables and pa-
rameters utilized in age structure model with immunity SIRD (Susceptible-
Infected-Recovered-Disease) models. The variables, representing population
compartments such as susceptible (S), infected (I), recovered (R), and dis-
ease (D), are measured in absolute quantities or proportions. The parameters,
including infection rates, power of infection, and birth and death rates, possess
specific units that may vary depending on the particular disease and context
being modeled.
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3.2.3 Results

In our study, we extensively investigate two models: the single age

class model and the two-age class model. These models play a crucial role

in providing us with valuable insights into the dynamics of disease transmis-

sion and progression. While they differ in their structural design, they share

common parameter values and initial conditions, enabling us to make mean-

ingful comparisons and obtain a comprehensive understanding of the behavior

of infectious diseases.

One of the key aspects we focus on is the hypothesis that children

have a lower likelihood of progressing to symptomatic infection compared to

adults. To thoroughly examine this hypothesis, we analyze both the single

age class model and the two-age class model. By incorporating age-specific

parameters and considerations, we can explore how disease dynamics differ

between children and adults.

In the single age class model, we investigate the progression of infection

within a homogeneous population, where all individuals are treated as a single

group without distinction based on age. This model allows us to study the

overall dynamics of the disease and its impact on the population as a whole.

By comparing the likelihood of symptomatic infection between different age

groups within this model, we can gain initial insights into the potential differ-

ences in disease severity.

However, to gain a more comprehensive understanding of the role of age

in disease dynamics, we also employ the two-age class model. This model di-

vides the population into two distinct age groups: children and adults. By con-

sidering the interactions and transmission dynamics between these age groups,
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we can specifically examine how the disease behaves differently among children

and adults. This model allows us to assess the varying susceptibility, infection

rates, and recovery patterns based on age, providing more nuanced insights

into the hypothesis.

Through the exploration of both models, we aim to uncover valuable

information regarding the hypothesis that children have a lower likelihood of

progressing to symptomatic infection compared to adults and determine neces-

sary conditions for endemic stability. By incorporating age-specific parameters

and observing the disease dynamics in different age groups, we can evaluate

the validity of this hypothesis and gain a deeper understanding of the role of

age in shaping the progression and severity of infectious diseases like Polio.

Single age class model results analysis

In our investigation of the single age class model with immunity, we

aim to understand the impact of different infection rates: 0.1 and 2.0. Fol-

lowing infection, individuals have two possible outcomes: they either become

asymptomatic or progress to a symptomatic state. The likelihood of infection

progressing to the asymptomatic state is 0.95, while the likelihood of progress-

ing to the symptomatic state is 0.05. To ensure population balance, we set the

birth and mortality rates to approximately 0.005, maintaining a stable equi-

librium between population growth and loss. The simulation duration spans

10 years, providing us with an opportunity to examine the dynamics of immu-

nity over time. During this period, we assume a contagious timescale of 0.15,

representing the duration in which individuals are infectious and capable of

transmitting the disease to others. Further, we assume that the model does

not have any vaccinated individuals in the population.
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To apply these models to a real-world scenario, we specifically focus on

the city of San Francisco, utilizing population data from 2021. Based on avail-

able information, the population of San Francisco in 2021 was approximately

815,201 individuals. By considering this population size, we assume an initial

infected population of around 100 individuals, with no individuals classified as

recovered or diseased at the beginning of the simulation.

By incorporating these parameters and adapting the models to the

context of San Francisco, we can simulate and analyze the spread of the disease,

track the progression of immunity, and gain valuable insights into the potential

for endemic stability within the city. This approach allows us to assess the

effects of different transmission rates on disease dynamics.
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Figure 3.5: The single age class model incorporating immunity provides valu-
able insights into the dynamics of infectious diseases, particularly when applied
to the analysis of polio. To contextualize our findings, we utilize population
data from San Francisco, which has a total population of 815,201 individuals.
By simulating the model over a 10-year period, we observe the emergence of a
steady state, indicating a state of equilibrium in the disease dynamics. In our
analysis of polio, we examine two scenarios: one with a low infection rate of
0.1 and another with a high infection rate of 2.0. When the infection rate is
low, the disease incidence remains at a minimal level. This suggests that the
impact on public health is relatively low, with only a small proportion of the
population being affected by the disease. However, in the case of a high infec-
tion rate, the disease spreads rapidly throughout the population. This leads to
a substantial increase in the number of infections and a larger population of
individuals experiencing symptoms of the disease. Despite the initial surge in
cases, we observe the emergence of a steady state, indicating the presence of
endemic stability.

Our observations indicate that when the infection rate is very low, the
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overall impact on the population is minimal. Infected individuals tend to re-

cover quickly, resulting in a low number of infections and no symptomatic

cases. However, as the infection rate increases, we observe a higher number

of infections occurring within a shorter timeframe, followed by a higher like-

lihood of infection progress to asymptomatic state. Nevertheless, the number

of individuals experiencing symptomatic disease remains relatively small, with

approximately 36,388 individuals affected.

Considering equal birth and death rates in our model, we find that the

susceptible population initially decreases rapidly as more individuals become

infected, recovered (asymptomatic), and disease (symptomatic). However,

over time, the susceptible population gradually increases due to new births,

while the number of infected individuals decreases and reaches a steady state

at approximately 24,260 individuals. This trend continues until a balance is

achieved. Although the susceptible population does not reach zero, it becomes

significantly smaller over time, resulting in a final susceptible population size

of approximately 63,180 individuals.

Our analysis reveals that higher infection rates lead to a larger number

of infections and recoveries (asymptomatic) individuals, while the susceptible

population gradually increases but remains relatively small due to a balance

between births and deaths. Moreover, the model reaches a steady state where

there is no significant increase or decrease in population size for each age group.

The presence of a high infection rate with a low number of symptomatic cases

indicates that polio has reached endemic stability in the population.

To gain a more comprehensive understanding of disease dynamics, we

also explore a two-age class model. This model introduces the concept of
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age groups, specifically children and adults, allowing us to analyze how age

influences disease transmission and progression. By incorporating age-specific

parameters and considering the interactions between different age groups, we

can gain valuable insights into the dynamics of disease spread and the impact

of age-related factors on endemic stability.

By studying the two-age class model, we can examine how age-specific

differences in susceptibility, infection rates, and likelihood of infection progress

to asymptomatic and symptomatic state shape the spread of the disease. This

approach enables us to assess the varying effects of age on disease dynamics

and identify age-related factors that contribute to the establishment of en-

demic stability. Understanding the impact of age on disease transmission and

progression is crucial for developing effective strategies to control and manage

infectious diseases in different populations.

Two age class

In our study of the two-age class model with immunity, we investigate

different transmission rates similar to the single age class model. However,

we introduce a distinction between children and adults by assigning different

power of infection values for each group. Specifically, we assume that the

power of infection for children (πc) is lower than that for adults (πa), with

πc = 0.005 and πa = 0.05. This differentiation allows us to examine how the

level of infection contributes to the stability of the disease within each age

group.

Furthermore, we account for the likelihood of infection progressing

to the asymptomatic state, considering the differences between children and
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adults. For children, we set the likelihood to be approximately 0.995, indicat-

ing a high probability of progressing to the asymptomatic state. In contrast,

for adults, we consider a value of 0.95, reflecting a slightly lower likelihood of

progressing to the asymptomatic state.

To simulate the age transition from children to adults, we introduce a

transition rate of approximately 0.001 for individuals transitioning from the

children age group to the adults age group. However, in this model, there is

no age transition from adults to the elderly.

For our simulation in the context of San Francisco, we utilize population

data from 2021. According to available information, the population of children

aged 0 to 2 years old in San Francisco was approximately 23,996, while the

adult population was around 791,205. These population figures serve as the

basis for initializing the model, while we maintain similar initial conditions for

the other compartments as in the single age class model.

By incorporating these parameters and population data, our goal is

to gain insights into the dynamics of the disease and assess its potential for

endemic stability in a two-age class population. This model allows us to ex-

plore the impact of different transmission rates, age-specific power of infection,

and the likelihood of progressing to the asymptomatic state, providing a more

nuanced understanding of the disease dynamics within distinct age groups.
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Figure 3.6: The figure illustrates the age structure model with immunity, in-
corporating the consideration of birth and death rates based on the modified
simulation. In this modified simulation, it is assumed that only adults are ca-
pable of giving birth, represented by µc = 0, while the death rate for adults,
µ, is determined by the equation µ = δ ∗ Nc

Na
, where δ represents the overall

death rate, and Nc and Na denote the population sizes of children and adults,
respectively. The simulation results align with the previous observations when
the infection rate is low, indicating the absence of an outbreak. Consequently,
the susceptible population remains unchanged, as the impact of the disease is
minimal. However, as the infection rate increases, an outbreak occurs, lead-
ing to a significant rise in infections within the population. Notably, as the
outbreak progresses, the infected population eventually reaches zero, indicating
that individuals have acquired immunity and the spread of polio has been effec-
tively halted. This suggests that the population has developed resistance to the
disease, leading to its eradication within the population. These findings empha-
size the importance of considering age-specific factors and the incorporation of
birth and death rates in disease modeling. By incorporating these elements, we
can observe the impact of different demographic factors on disease transmis-
sion and the eventual attainment of immunity and disease eradication.
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The simulation results from the modified model, which incorporates ad-

justments to new births occurring only among adults, reveal a significant trans-

formation in disease dynamics. This modification leads to notable changes in

the trajectory of the disease and its eventual outcome.

In the modified model, when examining the impact of low infection

rates, we observe a similar pattern as in the single age class model. With

minimal infection rates, the disease has a negligible impact on the population,

resulting in a relatively stable susceptible population size. The number of new

infections remains low, thereby maintaining a lower overall disease burden.

However, as we increase the infection rate, a distinct shift in dynamics

becomes apparent. The higher infection rate leads to a more pronounced

outbreak scenario characterized by a rapid increase in the number of infections

within the population. The outbreak progresses rapidly, affecting a larger

portion of the population before eventually reaching a peak and subsiding.

What becomes particularly intriguing in the modified model is the sub-

sequent trend observed as the outbreak progresses. Unlike in the previous

model, here we witness a decline in the number of infected individuals over

time, eventually reaching zero. This signifies a significant shift towards dis-

ease eradication within the population. The decline in the infected population

suggests that a substantial portion of the population has acquired immunity

through previous exposure to the disease. However, it’s important to note that

in this model, we do not observe a steady state.

This outcome reflects the effectiveness of the population’s immune re-

sponse in halting the spread of polio. With a larger proportion of individuals

being immune, the transmission of the disease is interrupted, resulting in the
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eradication of polio within the population. The eradication of polio in this

refined model demonstrates the potential for successful disease control and

prevention strategies, such as widespread vaccination campaigns and immu-

nization efforts. By achieving high levels of immunity within the population,

we can effectively halt the transmission of infectious diseases and work towards

their eradication.

It’s crucial to emphasize that the modified model shows a more fa-

vorable outcome in terms of disease control and eradication compared to the

previous model, which exhibited endemic stability. Endemic stability indicates

the potential for recurring outbreaks over time. These contrasting results high-

light the significance of accurately representing demographic factors and birth

and death rates when studying disease dynamics, as they can greatly influence

the trajectory and eventual outcome of infectious diseases within a population.

However, the primary goal is to achieve endemic stability, which requires iden-

tifying the necessary conditions. One approach to achieving endemic stability

is by increasing the infection rate. It was observed that when the infection

rate reaches or exceeds 5.3, there are still infected individuals present in the

population, indicating the achievement of endemic stability. This approach is

applied consistently across all models where endemic stability is not initially

present.
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Figure 3.7: The figure illustrates the simulation results of an age structure with
immunity model, considering that new births depend on the adult population
and setting the death rate for children to zero. The simulations are conducted
for both children and adults, allowing us to observe the impact of different
infection rates on the outbreak dynamics within each age group. When the
infection rate for children is low, as well as when it is high, no outbreak is
observed in the simulations. This suggests that children are less likely to become
susceptible and develop symptoms of the disease, regardless of the infection
rate. However, it is important to note that this does not imply the eradication
of polio in the population. Instead, it indicates that children have a lower
susceptibility and are less likely to show symptoms compared to adults. In
contrast, when the infection rate for adults is low, no outbreak occurs, aligning
with the previous observations. However, when the infection rate for adults is
increased, an outbreak is observed in the simulations. This emphasizes that
adults are more susceptible to the disease and can experience a higher risk of
infection and symptoms when the transmission rate is higher. Interestingly, the
simulation results for the age structure with immunity model closely resemble
those of the total age structure simulation. This suggests that while the infected
population may appear to reach zero, indicating a potential eradication of the
disease, it is more likely that children who were less affected by the disease
during their childhood may become susceptible and develop symptoms when
they reach adulthood.

This analysis focuses on the relationship between new births and the

adult population, as well as the assumption of a zero death rate for children.

The results of the simulation provide interesting insights into the dynamics of
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polio infection in different age groups.

In the simulation, it is observed that the results for the children pop-

ulation are consistent regardless of whether the infection rate is low or high.

This suggests that polio does not cause significant outbreaks among children

and that they are less likely to become symptomatic when infected. This can

be attributed to factors such as their immune response or previous vaccina-

tion, which provide a level of protection against the disease. Consequently,

the impact of polio on the children population remains minimal throughout

the simulation.

In contrast, the simulation results for the adult population reveal dis-

tinct patterns depending on the infection rate. When the infection rate is

low, similar to the observations in the previous analysis, polio does not have

a substantial impact on the adult population. The number of symptomatic

cases remains low, indicating that the disease does not spread widely among

adults in this scenario.

However, when the infection rate is high, an outbreak occurs in the

adult population. In this scenario, a larger proportion of adults become in-

fected, resulting in an increased number of symptomatic cases. Additionally,

some individuals may develop asymptomatic infections and subsequently ac-

quire immunity. This suggests that when the infection rate for polio is high,

adults are more likely to experience symptoms compared to children. The

higher number of symptomatic cases among adults may be attributed to fac-

tors such as weaker immune responses or a higher susceptibility to the disease.

Interestingly, the simulation also indicates the eradication of polio in

the adult population. The number of infected individuals decreases to zero,
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indicating that the disease has been effectively controlled and eliminated. How-

ever, this does not guarantee long-term eradication, as the simulation suggests

that children who were never infected with polio during their younger years re-

main susceptible as they transition into adulthood. If polio were to re-emerge

or be reintroduced into the population, these previously uninfected individuals

would be more likely to become symptomatic and contribute to the spread of

the disease among adults.

In the age structure model, we have observed that the disease has been

successfully eradicated. However, our main objective is to ensure that the

model achieves endemic stability. Therefore, it is crucial to explore the condi-

tions required to reach this state. One of the factors examined was the increase

in the infectious rate, aiming to have infected individuals within the popula-

tion. It was noted that when the infection rate is equal to or greater than 5.3,

there are still infected individuals present in the population, thereby achieving

endemic stability.

Force of infection and Disease incidence

In the analysis of the force of infection and disease incidence, we focus

on examining the average force of infection and disease incidence and making

a comparison between the single age class and two-age class models. The aim

of this analysis is to gain insights into the conditions necessary for the disease

to reach an endemic state in the population.

By comparing the single age class and two-age class models, we can

assess how different modeling approaches capture the dynamics of the force

of infection and disease incidence. The single age class model assumes a ho-
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mogeneous population, while the two-age class model incorporates age-specific

parameters and compartments to account for variations in susceptibility, trans-

mission, and recovery rates between different age groups. By comparing the

results of these two models, we can gain insights into the influence of age-

specific dynamics on the force of infection and disease incidence.
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Figure 3.8: This study conducts a comparative analysis of force of infection
and disease incidence dynamics in single age class and two-age class models
with immunity. By varying the transmission rate from 0.0 to 2.0, we observe
a notable decrease in disease incidence in the two-age class model. This re-
duction can be attributed to the incorporation of age-specific parameters and
population structures, which enhance the model’s accuracy in capturing real-
world dynamics. In the age structure analysis, we consider the scenario when
µ = δNc

Na
and µc = 0, considering child births originating from adults. This

enables us to assess the impact of intergenerational transmission within the
population. By integrating these age-specific parameters and population struc-
tures, the two-age class model offers a more comprehensive understanding of
disease dynamics, leading to a lower disease incidence compared to the single
age class model. This highlights the importance of considering age heterogene-
ity and demographic factors when studying disease spread and control strate-
gies.

In our study investigating the dynamics of polio transmission, we con-
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ducted experiments using both a single age class model and an age structure

model to understand the relationship between the force of infection, disease

incidence, and age-specific factors.

In the single age class model, we consistently observed that increasing

the infection rate resulted in a rise in the force of infection and disease inci-

dence. This indicated that higher infection rates increased the likelihood of

susceptible individuals becoming infected and developing symptoms. The rela-

tionship between infection rate and disease incidence showed an upward trend,

indicating that as infections increased, the number of symptomatic cases also

increased. However, at a certain threshold of infection rate, we noticed that

the disease incidence reached a plateau. This suggested that the rate of new

infections stabilized, resulting in a relatively constant level of symptomatic

cases over time.

Moving to the age structure model, we expanded our analysis to incor-

porate age-specific factors and their impact on disease dynamics. By consid-

ering birth and death rates that account for age-specific parameters, such as

the proportion of children and the lower likelihood of children dying from the

disease, we introduced a more realistic representation of the population.

Interestingly, with the inclusion of age-specific factors, we found that

the disease incidence reached a plateau more rapidly compared to the scenario

without considering age-specific considerations. The presence of children, who

were assumed to be more likely to be asymptomatic compared to adults, played

a significant role in shaping disease incidence levels. When we manipulated

the size of the children’s population, we observed notable differences in overall

disease incidence. This shift in the disease incidence peak was attributed to the
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fact that infected children had a higher likelihood of remaining asymptomatic,

leading to a lower number of symptomatic cases. This finding aligned with

the understanding that children are more susceptible to polio and less likely

to become symptomatic than adults.

Throughout our investigation, we focused specifically on the context of

polio. The results from our study highlighted the complex interplay between

transmission rates, age-specific factors, and disease spread. By considering the

age structure and incorporating age-specific parameters, we gained valuable

insights into the differential contributions of different age groups to disease

transmission and the occurrence of symptomatic cases.
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3.3 Absence of Immunity and Partial Immu-

nity: Covid-19

3.3.1 Overview of Covid-19

The SARS-CoV-2 virus is responsible for causing Covid-19, an infec-

tious disease as identified by the World Health Organization (WHO). Initially

identified in 2019 in Wuhan City, Hubei Province, China, as an outbreak of

respiratory illness, it rapidly spread globally and was declared a pandemic in

2020 due to its high rate of infection and the significant impact it had on

public health and economies worldwide. Covid-19, also commonly referred to

as Coronavirus disease, belongs to the family of novel coronaviruses [32].

SARS-CoV-2 Transmission

The SARS-CoV-2 virus is a severe acute respiratory syndrome coro-

navirus that primarily spreads through respiratory droplets and particles re-

leased into the air when an infected person breathes, talks, coughs, sneezes, or

engages in activities that involve the release of respiratory secretions. These

droplets can be inhaled by others in close proximity or deposited on surfaces

that can be touched by individuals, leading to potential transmission through

contact [33].

Symptoms and Measures

Symptoms of Covid-19 typically manifest within a range of 2 to 14

days after infection, although it is important to note that an infected person

can be contagious to others for up to 2 days before symptoms appear [33].
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The contagious period can last for 10 to 20 days, varying depending on factors

such as an individual’s immune response and the severity of their illness. While

most people experience mild to moderate illness and recover without needing

special treatment, certain populations, such as those with weakened immune

systems, older adults, and individuals with underlying medical conditions, are

at higher risk of developing severe illness [32].

The impact of Covid-19 has been devastating, with millions of deaths

reported worldwide. In addition to the immediate health consequences, the

disease has caused lasting health problems in some survivors, including res-

piratory complications, cardiovascular issues, and other long-term effects that

are still being studied and understood by medical professionals.

To mitigate the spread of the virus, various preventive measures have

been recommended. These include staying at home and self-isolating when

feeling sick, wearing properly fitted masks in public spaces, practicing respi-

ratory etiquette by covering the mouth and nose when coughing or sneezing,

avoiding touching surfaces whenever possible, maintaining good hand hygiene

by frequently washing hands with soap and water or using alcohol-based hand

sanitizers, following social distancing guidelines, and adhering to local guid-

ance and regulations regarding gatherings and public health measures.

It is important to note that while individuals may recover from Covid-

19, there is a risk of subsequent infections as the disease does not necessarily

confer long-lasting immunity. This means that individuals can become sus-

ceptible to reinfection after recovering from the initial illness. As a result,

vaccination campaigns have played a crucial role in combating the virus, with

the goal of reducing the severity of the disease, preventing hospitalizations and
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deaths, and ultimately achieving herd immunity to protect vulnerable popula-

tions. Vaccines have been developed and approved for emergency use in many

countries, following rigorous testing and evaluation to ensure their safety and

efficacy.

3.3.2 Mathematical Models

In this section, we delve into the study of models that investigate the

intriguing phenomenon of absence or partial immunity. It is not uncommon

for individuals who have previously recovered from a disease or infection to

become susceptible to it again, even though they had developed some level

of immunity initially. This absence of immunity implies that their immune

system no longer provides adequate protection against the disease or infection,

leaving them vulnerable to illness once more.

To begin our analysis, we investigate the hypothesis that the power

of infection increases as individuals progress in age. This suggests that the

likelihood of infection progressing to a symptomatic state becomes higher as

age class increases. We can express this as the power of infection for children,

denoted by πc, being significantly smaller than the power of infection for adults,

denoted by πa.

Additionally, we examine the power of infection for subsequent infec-

tion, denoted by πr, and compare it to the power of infection for primary

infections, denoted by π. The aim here is to explore whether there is a de-

crease in the probability of subsequent infection among individuals who have

previously been infected. If the power of infection for subsequent infection

is lower than that of primary infections, it suggests a reduced likelihood of
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individuals being re-infected after recovering from the initial infection.

To achieve a comprehensive understanding of these aspects of infec-

tious diseases, we explore both single models and age-structured models. Sin-

gle models focus on studying the dynamics of infection and immunity in a

homogeneous population, assuming that everyone has the same level of sus-

ceptibility and recovery. On the other hand, age-structured models account

for the heterogeneity of populations by dividing individuals into different age

classes, recognizing that different age groups may exhibit varying levels of

susceptibility and recovery.

By investigating these models, we aim to shed light on the intricate

dynamics of subsequent infection and age-related susceptibility in the context

of Covid-19.

A. Single Age class model with Absence of Immunity

The single age class model used in this analysis is similar to the previ-

ously discussed immunity model. It consists of four compartments representing

different states individuals can be in during the disease prevalence: suscepti-

ble (S), infected (I), recovered (R), and diseased (D). However, unlike the

immunity model that considered birth and death rates to maintain population

balance, this model focuses on the phenomenon of absence of immunity.

When an individual recovers from the disease, instead of acquiring long-

lasting immunity, they become susceptible to the infection again. This implies

a transition from the recovered (R) and diseased (D) compartments back to

the susceptible (S) compartment, reflecting the loss of immune protection and

the potential for reinfection. By incorporating the absence of immunity mech-
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anism, we can observe the flow of individuals between compartments in the

population over time.

The mathematical equations (3.17, 3.18, 3.19, and 3.20) governing the

transition between these compartments capture the dynamics of the disease

in the single age class model. These equations describe the rates of change for

each compartment and determine how individuals move between susceptible,

infected, recovered, and diseased states. Simulating these equations allows

us to study the system’s behavior and explore the impact of the absence of

immunity.

The model simulation enables the investigation of conditions required

for achieving endemic stability, where the disease persists in the population

over the long term. By analyzing the system’s dynamics and studying its sta-

bility properties, we can gain insights into the factors contributing to sustained

disease transmission and its population-level impact.

Figure 3.9 visualizes the flow of individuals between compartments in

the single age class model, illustrating the transitions and interactions among

susceptible, infected, recovered, and diseased populations. This visualization

aids in understanding the disease dynamics and the role of absence of immunity

in shaping infection spread and persistence.

Through this analysis, we aim to deepen our understanding of the im-

pact of absence of immunity and explore the conditions necessary for estab-

lishing and maintaining endemic stability in the single age class model.
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Figure 3.9: This informative diagram presents a schematic representation of
the single age class model, focusing on disease transmission and progression
within a population comprising a single age group. In this model, the absence of
immunity is assumed, meaning individuals remain continuously susceptible to
the disease. By visualizing the transitions between compartments (Susceptible,
Infected, Recovered, and Diseased), the diagram provides a valuable insight
into the dynamics of disease within a homogeneous population.

dS

dt
= −λS

I

N
+ α(R +D), (3.17)

dI

dt
= λS

I

N
− ρ(γ + π)I, (3.18)

dR

dt
= ργI − αR (3.19)

dD

dt
= ρπI − αD (3.20)

The set of equations (3.17) - (3.20) describe a single-age SIRD (Susceptible-
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Infectious-Recovered-Disease) model for infectious diseases. Equation (3.17)

represents the rate of change of susceptible individuals, indicating how the

number of susceptible individuals changes over time. It considers the infection

rate of the disease, represented by λ, which determines how easily the disease

spreads. The term λS I
N

captures the rate at which susceptible individuals

become infected, proportional to the product of the number of susceptible in-

dividuals (S) and infectious individuals (I) divided by the total population size

(N). Additionally, the term α (R + D) represents the rate at which individu-

als lose their immunity and transition from the recovered (R) or disease (D)

compartments back to the susceptible compartment (S).

Equation (3.18) represents the rate of change of infectious individu-

als. It considers the infection dynamics, likelihood of infection progressing to

asymptomatic and symptomatic state. The term λS I
N

represents the rate at

which susceptible individuals become infected, as mentioned earlier. The term

ρ(γ + π)I capture the rate at which infectious individuals progress to asymp-

tomatic and symptomatic state. It is the product of the timescale that infec-

tions are contagious (ρ), the likelihood of infection progress to asymptomatic

state of infectious individuals (γ), and the power of infection of individuals

(π).

Equation (3.19) represents the rate of change of recovered individuals.

It accounts for the individuals who have recovered from the disease and loss

immunity. The term ργI represents the rate at which infectious individuals

become asymptomatic and transition to the recovered compartment (R). The

term αR represents the rate at which recovered individuals lose their immunity

and transition back to the susceptible compartment (S).
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Equation (3.20) represents the rate of change of disease individuals,

representing those who are symptomatic with the disease. The term ρπI rep-

resents the rate at which infectious individuals become symptomatic (disease)

and transition to the disease compartment (D). The term αD represents the

rate at which symptomatic individuals lose their immunity and transition back

to the susceptible compartment (S).

These equations provide insights into the dynamics of disease transmis-

sion, recovery, and disease within a single-age population. They highlight the

interplay between the various compartments and the factors influencing the

spread and control of infectious diseases. In this model, without accounting

for birth and death, the total population remains constant, indicating that

everyone is likely to be infected at least once during the course of the disease.

To gain further insights into the dynamics of the model, we can cal-

culate key epidemiological measures that provide valuable information about

disease transmission and impact. Two such measures are the force of infec-

tion and disease incidence, which can be computed using equations similar to

those used in the post-infection single-age model. These measures will help

us assess the intensity of disease transmission and the rate of new infections

over time, enhancing our understanding of the epidemiological dynamics in

the population.

Identifying Steady States

To analyze the steady states of the single age class model with absence

of immunity, it is necessary to simplify the model. The original model is

complex, and simplifying it would make it easier to identify the steady states.
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Following the approach used in the classical SIR model, we aim to

determine the equilibria of the equations. This helps us understand when we

have a disease-free equilibrium or a disease endemic state. In the single age

class model, we begin by introducing the variable R̃ = R +D to account for

the loss of immunity. This modification leads to a new model formulation, as

demonstrated below.

dS

dt
= −λS

I

N
+ µR̃, (3.21)

dI

dt
= λS

I

N
− ρ(γ + π)I, (3.22)

dR̃

dt
= ργI − αR̃ (3.23)

To analyze the steady states of the single age class model with absence

of immunity, we consider two equilibrium points: the disease-free equilibrium

and the disease-endemic equilibrium.

At the disease-free equilibrium, where the infected population I is zero,

the susceptible population S reaches a value of ργN
λ

. This equilibrium repre-

sents the eradication of the disease.

At the disease-endemic equilibrium, where I ̸= 0, we solve for the value

of I by setting dS
dt

= 0. The equation becomes:

−λ
I

N
S + αR̃ = 0

−λ
I

N
S + α(N–S–I) = 0



107

Simplifying and substituting the value of S, we have:

−λ
I

N

ργN

λ
+ αN − α

ργN

λ
− αI = 0

Solving for I, we obtain the steady state at the disease-endemic equi-

librium:

I∗ =
αN(1 + ργ

λ
)

ργ + α

Therefore, we can calculate force of infection using I∗ as:

F ≈ λI∗ =
αN(λ+ ργ)

ργ + α

Additionally, the disease incidence rate can be defined as:

D ≈ ρπI∗ = ρπ
αN(1 + ργ

λ
)

ργ + α

By analyzing the relationship between the force of infection and disease

incidence, we expect to see a linear relationship where an increase in the force

of infection results in a proportional increase in disease incidence.
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Figure 3.10: This graph illustrates the relationship between disease incidence
and force of infection in the single age class absence of immunity model. As the
force of infection increases, indicating a higher infection rate or increased con-
tact between susceptible and infectious individuals, the disease incidence also
increases. The relationship between these two variables is linear, highlighting
the direct impact of the force of infection on the occurrence of new infections
within the population.

Through our analysis of the single age class model with absence of

immunity, we anticipate finding a direct relationship between the force of in-

fection and disease incidence. Specifically, as the force of infection increases,

we expect to observe a corresponding increase in the number of new cases of

the disease. This phenomenon is expected due to the potential for individuals

in the population to experience reinfection as a result of the loss of immunity,

which can lead to an increase in the overall number of new cases of the dis-

ease. This is illustrated in the single age class model with absence of immunity
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flow chart, where individuals may transition back to the susceptible compart-

ment after a period of time, leading to an increased likelihood of infection and

subsequent disease incidence.

B. Age Structure Model with Absence of Immunity

The age structure model with absence of immunity follows a structure

similar to the age structure model with immunity, but with some differences. It

does not consider birth and death rates, focusing instead on the concept of loss

of immunity. This model incorporates two age classes and four compartments

(Susceptible, Infectious, Recovered, and Disease) to represent population dy-

namics.

The flow chart depicted in Figure 3.12 illustrates the transitions be-

tween compartments for each age class. Upon infection, individuals move from

the susceptible compartment to the infectious compartment. Subsequently,

they can transition to either the recovered or diseased compartments based on

the disease outcome. Recovered individuals have the potential to lose their im-

munity and return to the susceptible compartment, while diseased individuals

can also lose their immunity but remain in the diseased compartment.

The mathematical equations governing the age structure model without

immunity are presented in Equations (3.24 - 3.31). These equations describe

the rates of change for each compartment in each age class.
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Figure 3.11: This model illustrates the spread of infectious diseases within a
population using an age structure model that focus on absence of immunity.
The population is divided into two age groups: children and adults, represented
by the arrows flowing between the susceptible (S), infected (I), recovered (R),
and disease (D) categories. The arrows indicate the movement of individuals
as they transition between these compartments, capturing the transmission dy-
namics of the disease.
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dSc

dt
= −λc

Ic
N
Sc + αRc + αDc − δSc, (3.24)

dSa

dt
= −λa

Ia
N
Sa + αRa + αDa + δSc, (3.25)

dIc
dt

= λc
Ic
N
Sc − ρ(γc + πc)Ic − δIc, (3.26)

dIa
dt

= λa
Ia
N
Sa − ρ(γa + πa)Ia + δIa, (3.27)

dRc

dt
= ργcIc − βRc − δRc (3.28)

dRa

dt
= ργaIa − βRa + δRa (3.29)

dDc

dt
= ρπcIc − αDc − δDc (3.30)

dDa

dt
= ρπaIa − αDa + δDa (3.31)

An age structure model, considering children and adults as distinct age

classes, provides valuable insights into the transmission dynamics of a disease

within a population. This model consists of compartments representing the

susceptible, infected, recovered (asymptomatic), and diseased (symptomatic)

populations.

In this simplified model, the total population is divided into two age

classes: children and adults. Each age class has its own set of compartments,

and the sum of individuals in each compartment within an age class adds up

to the total population of that age class.

To capture important aspects of disease transmission, the model incor-

porates various parameters. The infection rate (λc,a) represents the rate at

which the disease spreads within each age class. The probabilities of transi-

tioning to the asymptomatic and symptomatic states are denoted by γc,a and
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πc,a, respectively.

The parameters α reflect the loss of immunity in symptomatic and

asymptomatic infections within each age class. These parameters determine

the duration of immunity after recovering from the disease.

The parameter ρ represents the contagious period of infected individ-

uals, indicating the timeframe in which they can transmit the disease to sus-

ceptible individuals. The parameter δ captures the transition rate between

age classes, representing the movement of individuals from one age class to

another as they age.

It is important to note that in this model, no birth or death processes

are considered. As individuals transition from the child age class to the adult

age class, the population of children eventually diminishes to zero. However, to

refine the model, we assume a zero-transition rate between age classes, meaning

children remain children indefinitely. This refinement allows us to examine

the dynamics of disease transmission while considering a fixed population of

children.

By simulating this refined model over a specified time period, we can

gain valuable insights into the dynamics of disease transmission, the differen-

tial impact on different age groups, and the potential for re-infection or loss

of immunity within the population. These insights can inform public health

strategies, intervention planning, and efforts towards disease control and pre-

vention.
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Figure 3.12: This model illustrates the spread of infectious diseases within
a population using an age structure model that focus on absence of immunity
without considering transition between age class. The population is divided into
two age groups: children and adults, represented by the arrows flowing between
the susceptible (S), infected (I), recovered (R), and disease (D) categories. The
arrows indicate the movement of individuals as they transition between these
compartments, capturing the transmission dynamics of the disease. This model
illustrates that children class will remain children forever as well as the adult
population.
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dSc

dt
= −λc

Ic
N
Sc + αRc + αDc

dSa

dt
= −λa

Ia
N
Sa + αRa + αDa

dIc
dt

= λc
Ic
N
Sc − ρ(γc + πc)Ic

dIa
dt

= λa
Ia
N
Sa − ρ(γa + πa)Ia

dRc

dt
= ργcIc − βRc

dRa

dt
= ργaIa − βRa

dDc

dt
= ρπcIc − αDc

dDa

dt
= ρπaIa − αDa

Variable Description unit
λ Infectious rate of susceptible population 1

people*days

α The timescale of loss of immunity 1
days

π Power of infection, likelihood of infection progress to symptomatic 1
days

γ = (1− π) Likelihhod of infection progress to asymptomatic state 1
days

ρ Timescale that Infections are contagious 1
days

δ Transition rate between age groups 1
days

t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered(asymptomatic) people people
D Number of disease (symptomatic) people people
N Total number of people people

Table 3.2: This table presents the units associated with the variables
and parameters utilized in absence of immunity SIRD (Susceptible-Infected-
Recovered-Disease) models. The variables, representing population compart-
ments such as susceptible (S), infected (I), recovered (R), and disease (D),
are measured in absolute quantities or proportions. The parameters, including
infection rates, power of infection, and loss of immunity rates, possess spe-
cific units that may vary depending on the particular disease and context being
modeled.
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C. Single Age class Partial Immunity without Birth and Death

The single age class partial immunity model expands upon the SIRD

framework, focusing on the dynamics of re-infection. It specifically accounts

for scenarios where individuals can lose immunity after recovering from the

disease, such as Covid-19.

This model introduces six compartments to represent different states

of the population: susceptible (S), infected (I), recovered (R), disease (D),

susceptible to re-infection (Sr), and infected through re-infection (Ir).

By investigating the flow of individuals among these compartments, as

illustrated in Figure 3.13 and analyzing the mathematical equations (3.32 –

3.37) governing the model, we gain valuable insights into the complex dynamics

of the disease.

This analysis allows us to explore the impact of partial immunity on

disease transmission and progression within the population. We observe how

individuals transition from susceptibility to infection, and potentially progress

to a recovered or diseased state. Additionally, we consider the possibility of in-

dividuals who are asymptomatic and symptomatic from the disease becoming

susceptible to re-infection, leading to a new cycle of infection.
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Figure 3.13: This model illustrates the dynamics of disease transmission and
progression within a population, accounting for compartments such as suscep-
tible, infected, recovered (asymptomatic), diseased (symptomatic), susceptible
to re-infection, and infected through re-infection. The model offers valuable
insights into the effects of partial immunity on disease spread and progression,
providing a comprehensive understanding of the interplay between different
compartments and the overall population dynamics.

dS

dt
= −λS

I

N
(3.32)

dI

dt
= λS

I

N
− ρ(γ + π)I (3.33)

dR

dt
= ργI − αR + ρrγrIr (3.34)

dD

dt
= ρπI − αD + ρrπrIr (3.35)

dSr

dt
= α(R +D)− λr I

r

N
Sr (3.36)

dIr

dt
= λr I

r

N
Sr − ρr(γr + πr)Ir (3.37)

In the single age class partial immunity model, we utilize a set of math-

ematical equations to analyze the dynamics of various population compart-

ments. These equations provide valuable insights into the changes occurring

within the susceptible, infected, recovered, diseased, susceptible in the reinfec-
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tion group, and infected in the reinfection group populations.

Equation (3.32) characterizes the rate of change of the susceptible pop-

ulation, depicting the decrease in susceptible due to disease transmission. The

parameter λ represents the infection rate, indicating how quickly susceptible

individuals become infected. The variable S denotes the susceptible popula-

tion, I represents the infected population, and N signifies the total population

size.

Equation (3.33) represents the rate of change of the infected population,

highlighting its increase through new infections and decrease through recovery

(asymptomatic) and disease progression (symptomatic). This equation enables

us to understand the fluctuations in the number of individuals actively infected

with the disease over time.

Equation (3.34) describes the rate of change of the recovered popula-

tion, capturing its increase through recovery from the infection. However, it

also accounts for the potential decrease in the recovered population due to loss

of immunity and subsequent reinfection. This equation provides insights into

the dynamics of individuals who have successfully recovered from the disease

but remain susceptible to reinfection.

Equation (3.35) represents the rate of change of the diseased popula-

tion, illustrating its increase through disease progression, as individuals tran-

sition from being infected to exhibiting symptoms. Similar to the recovered

population, the diseased population can also decrease due to the loss of im-

munity leading to reinfection. This equation allows us to understand the

dynamics of individuals affected by symptomatic disease and their potential

for reinfection.
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Equation (3.36) focuses on the dynamics of individuals in the suscepti-

ble population in the reinfection group, who have previously been infected. It

considers the possibility of reinfection, acknowledging that individuals in this

group can become susceptible to the disease again. This equation explores

how the susceptible population in the reinfection group changes over time,

considering both natural population loss and reinfection dynamics.

Equation (3.37) provides insights into the dynamics of individuals who

have been previously infected but are now susceptible to reinfection. It consid-

ers the possibilities of reinfection, recovery, and disease progression within this

specific population subgroup. By examining this equation, we can understand

how the number of individuals in the reinfection group who become reinfected

or recover evolves over time.

Through the examination and analysis of these equations, we can gain

a better understanding of how different population compartments interact and

change over time in the context of absence or partial immunity. These math-

ematical representations allow us to explore the complex dynamics of disease

transmission, recovery, reinfection, and disease progression, providing crucial

insights into the behavior of infectious diseases within a single age class pop-

ulation.

D. Age Structure Model Partial Immunity without Birth and Death

The age structure model, an extension of the single age class partial

immunity model, provides a more comprehensive understanding of disease dy-

namics by considering the heterogeneity of age groups within the population.

This model acknowledges that individuals of different ages may have distinct
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levels of susceptibility, infection rates, asymptomatic and symptomatic cases,

and re-infection dynamics.

In the age structure model, the population is divided into multiple age

groups, each characterized by its own compartments representing the suscepti-

ble, infected, recovered (asymptomatic), diseased (symptomatic), susceptible

to re-infection, and infected through re-infection populations. The transitions

between these compartments are governed by age-specific parameters.

By examining the flow of individuals among these compartments, as

depicted in Figure 3.15 and analyzing the system of equations (3.38 - 3.49) that

describe the model, we gain a deeper understanding of the intricate dynamics

of disease transmission and progression within different age groups.

Incorporating age structure into the partial immunity model enables us

to explore the influence of age-related factors on disease dynamics. This in-

cludes comprehending the varying vulnerability of specific age groups to infec-

tion, assessing the potential for intergenerational transmission, and evaluating

the effectiveness of age-targeted interventions. By accounting for age-specific

parameters, we can develop more targeted strategies for disease control and

prevention, tailored to the unique characteristics and requirements of different

age groups in the population.
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Figure 3.14: This model captures the dynamics of disease transmission and
progression within a population that is divided into different age groups. The
compartments include susceptible (S), infected (I), recovered (R), diseased (D),
susceptible to re-infection (Sr), and infected through re-infection (Ir) for each
age group. By analyzing the transitions between these compartments and con-
sidering age-specific parameters, we gain insights into the interplay between
age structure and partial immunity in shaping the spread and impact of the
disease within the population.
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dSc

dt
= −λcSc

Ic
N

− δSc (3.38)

dSa

dt
= −λaSa

Ia
N

+ δSc (3.39)

dIc
dt

= λcSc
Ic
N

− ρ(γc + πc)Ic − δIc (3.40)

dIa
dt

= λaSa
Ia
N

− ρ(γa + πa)Ia + δIc (3.41)

dRc

dt
= ργcIc − αRc + ρrγr

cI
r
c − δRc (3.42)

dRa

dt
= ργaIa − αRa + ρrγr

aI
r
a + δRc (3.43)

dDc

dt
= ρπcIc − αDc + ρrπr

cI
r
c − δDc (3.44)

dDa

dt
= ρπaIa − αDa + ρrπr

aI
r
a + δDc (3.45)

dSr
c

dt
= α(Rc +Dc)− λr

c

Irc
N
Sr
c − δSr

c (3.46)

dSr
a

dt
= α(Ra +Da)− λr

a

Ira
N
Sr
a + δSr

c (3.47)

dIrc
dt

= λr
c

Irc
N
Sr
c − ρr(γr

c + πr
c)I

r
c − δIrc (3.48)

dIra
dt

= λr
a

Ira
N
Sr
a − ρr(γr

a + πr
a)I

r
a + δIrc (3.49)

The age structure model with partial immunity builds upon the single

age class model by introducing two distinct age classes: children and adults.

The total population is now represented as the sum of individuals in both age

classes, denoted as N = Nc + Na. This extension enables us to capture the

different dynamics and characteristics of disease transmission and progression

within each age group.

In this model, we introduce the transition rate parameter δ, which ac-

counts for the movement of individuals between the two age classes. This

parameter reflects the natural aging process and population dynamics, allow-
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ing us to analyze how changes in age structure influence disease spread and

progression.

The equations governing the age structure model with partial immunity

are similar to those of the single age class model, but they are now differen-

tiated for each age class. Variables and parameters such as the susceptible

population (S), infected population (I), recovered population (R), diseased

population (D), and the susceptible and infected populations in the reinfec-

tion group (Sr and Ir) are considered separately for each age class.

However, we acknowledge a limitation in the original model, which

could result in the eventual depletion of the child population as they transition

to adulthood. To overcome this issue, we refine the model by introducing a

modification. In the refined model, we assume that children remain in the

child age class indefinitely, with a transition rate of zero between age classes.

This modification ensures the stability of the child population throughout the

simulation, addressing the concern of population depletion.
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Figure 3.15: This model captures the dynamics of disease transmission and
progression within a population that is divided into different age groups. The
compartments include susceptible (S), infected (I), recovered (R), diseased (D),
susceptible to re-infection (Sr), and infected through re-infection (Ir) for each
age group. By analyzing the transitions between these compartments and con-
sidering age-specific parameters, we gain insights into the interplay between
age structure and partial immunity in shaping the spread and impact of the
disease within the population. This is a refined model schematic where it does
not considers the transition rate between age classes.
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dSc

dt
= −λcSc

Ic
N

dSa

dt
= −λaSa

Ia
N

dIc
dt

= λcSc
Ic
N

− ρ(γc + πc)Ic

dIa
dt

= λaSa
Ia
N

− ρ(γa + πa)Ia

dRc

dt
= ργcIc − αRc + ρrγr

cI
r
c

dRa

dt
= ργaIa − αRa + ρrγr

aI
r
a

dDc

dt
= ρπcIc − αDc + ρrπr

cI
r
c

dDa

dt
= ρπaIa − αDa + ρrπr

aI
r
a

dSr
c

dt
= α(Rc +Dc)− λr

c

Irc
N
Sr
c

dSr
a

dt
= α(Ra +Da)− λr

a

Ira
N
Sr
a

dIrc
dt

= λr
c

Irc
N
Sr
c − ρr(γr

c + πr
c)I

r
c

dIra
dt

= λr
a

Ira
N
Sr
a − ρr(γr

a + πr
a)I

r
a

To further enhance our understanding of disease dynamics and popu-

lation interactions, we can expand the age structure model with partial im-

munity to incorporate important demographic processes such as birth and

natural deaths. By including these factors, we can investigate how population

growth, mortality rates, and new births impact disease transmission patterns

and overall population dynamics. This expanded model provides a more com-

prehensive framework for studying infectious diseases in realistic population

settings, considering the complex interplay between epidemiological factors,

age structure, and demographic processes.
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E. Single Age class Partial Immunity with Birth and Death

To enhance the realism of our model, we will now incorporate the im-

portant factors of births and deaths into the framework. This updated model

recognizes that real-world populations are dynamic, with new individuals be-

ing born and existing individuals naturally passing away.

By considering the impact of births and deaths, we can capture the

continuous renewal and replacement of individuals within a population. This

becomes especially important when studying infectious diseases, as the pop-

ulation’s composition changes over time due to the interplay between birth,

death, and disease transmission.

Expanding on the previous model, we maintain the six compartments:

susceptible (S), infected (I), recovered (R), disease (D), susceptible in the

reinfection group (Sr), and infected in the reinfection group (Ir). However,

we now recognize that the total population is subject to variations caused by

births and deaths.

To illustrate the flow of individuals among these compartments and

the influence of births and deaths, we can refer to the flow chart shown in

Figure 3.16. Additionally, the mathematical equations (3.50 – 3.55) govern

the model, accounting for the rates of change in each compartment while

considering births and deaths.

By incorporating births and deaths into the model, we can more accu-

rately reflect the dynamic nature of populations and the continuous renewal

of individuals. This expanded framework enables us to investigate the impact

of population growth, mortality rates, and new births on disease transmission

patterns and overall population dynamics.
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Figure 3.16: This flow diagram represents the movement of individuals among
the different compartments in the single age class model. It shows the tran-
sitions between the susceptible (S), infected (I), recovered (R), disease (D),
susceptible in the reinfection group (Sr), and infected in the reinfection group
(Ir) populations. Additionally, it highlights the influence of births and deaths
on the overall population dynamics. The arrows indicate the direction of flow,
and the labels on the arrows represent the corresponding transitions and pro-
cesses. This diagram provides a visual representation of the interconnectedness
and flow of individuals within the model, incorporating the effects of both dis-
ease transmission and population dynamics.

dS

dt
= µN − λS

I

N
− µS (3.50)

dI

dt
= λS

I

N
− ρ(γ + π)I − µI (3.51)

dR

dt
= ργI − αR + ρrγrIr − µR (3.52)

dD

dt
= ρπI − αD + ρrπrIr − µD (3.53)

dSr

dt
= α(R +D)− λr I

r

N
Sr − µSr (3.54)

dIr

dt
= λr I

r

N
Sr − ρr(γr + πr)Ir − µIr (3.55)
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In this refined model, we observe a system of equations that builds upon

the single age class model with partial immunity by incorporating birth and

death processes. These additional equations consider the natural renewal of

the population through births and the attrition of individuals through deaths.

Equation (3.50) describes the rate of change of the susceptible popula-

tion, accounting for both disease transmission and population growth through

births. It signifies that the susceptible population increases as a result of new

births and decreases due to disease transmission and natural deaths. The

infection rate, the number of susceptible and infected individuals, as well as

natural deaths, influence the dynamics of the susceptible population.

Equation (3.51) represents the rate of change of the infected population,

considering the contributions of new infections, recoveries, disease progression

(symptomatic), and natural deaths. This equation allows us to understand

how the number of actively infected individuals changes over time, considering

both disease dynamics and population attrition.

Equation (3.52) captures the rate of change of the recovered popula-

tion, emphasizing the impact of recoveries on its increase, and accounting for

natural deaths and re-infection due to loss of immunity. This equation pro-

vides insights into the dynamics of individuals who have recovered from the

disease and the potential for re-infection within the population.

Equation (3.53) reflects the rate of change of the diseased population,

considering the increase through symptomatic disease progression, and the

decrease through natural deaths and re-infection due to loss of immunity. It

helps us understand the dynamics of individuals affected by symptomatic dis-

ease and their vulnerability to re-infection.
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Equation (3.54) focuses on the rate of change of the susceptible popula-

tion in the reinfection group, considering the dynamics of reinfection and nat-

ural deaths. It provides insights into the susceptibility to re-infection among

individuals who have previously been infected.

Equation (3.55) represents the rate of change of the infected population

in the reinfection group, accounting for the dynamics of reinfection, recoveries,

disease progression (symptomatic), and natural deaths. This equation helps

us understand how individuals in the reinfection group transition between

different infection states over time.

By incorporating these refined equations into the model, we gain a

more comprehensive understanding of the dynamics of an infectious disease

within a population. The inclusion of birth and death processes allows for a

more realistic representation of population renewal and attrition, enabling us

to study disease dynamics and population stability in a more accurate and

nuanced manner.

F. Age Structure Model Partial Immunity with Birth and Death

The age structure model with partial immunity and incorporation of

births and deaths is an advanced framework that considers the dynamic na-

ture of real-world populations. By considering the continuous renewal and

replacement of individuals through births and deaths, as well as age-specific

dynamics and partial immunity, this model provides a more realistic depiction

of disease dynamics.

In this expanded model, the population is divided into different age

groups, such as children and adults. Each age group has its own compart-
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ments representing susceptible, infected, recovered (asymptomatic), diseased

(symptomatic), susceptible to re-infection, and infected through re-infection

populations. The transitions between these compartments are influenced by

age-specific parameters, including infection rates, transition rates, likelihood

of infection progress to asymptomatic and symptomatic state, and reinfection

dynamics.

The flow of individuals among these compartments, as illustrated in

Figure 3.17, is described by a system of equations (3.56 - 3.67). These equa-

tions capture the interactions between disease transmission, partial immunity,

births, and deaths. They quantify the rate of change for each population

compartment and account for the transitions between them. Additionally,

they consider factors such as disease transmission from infected to suscepti-

ble individuals, the development and recovery of partial immunity, reinfection

dynamics, and the impact of births and deaths on the overall population size.

By incorporating births and deaths into the age structure model with

partial immunity, we gain a more accurate representation of population dy-

namics and their interaction with infectious diseases. This expanded frame-

work enables us to examine the effects of population growth, mortality rates,

and new births on disease transmission patterns, age-specific dynamics, and

overall population dynamics. It provides valuable insights for understanding

the complex interplay between disease dynamics, age structure, and popula-

tion demographics, empowering decision-makers in public health interventions

and policy planning.
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Figure 3.17: The flow diagram illustrates the dynamic movement of individuals
among different compartments in the age structure model with partial immu-
nity, accounting for births and deaths. The diagram showcases the transi-
tions between susceptible, infected, recovered (asymptomatic), diseased (symp-
tomatic), susceptible to re-infection, and infected through re-infection popula-
tions for each age group. This diagram visualizes the complex interactions and
pathways within the model, highlighting the interplay between disease transmis-
sion, partial immunity, births, deaths, and population dynamics.
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dSc

dt
= µN − λcSc

Ic
N

− µSc − δSc (3.56)

dSa

dt
= −λaSa

Ia
N

− µSa + δSc (3.57)

dIc
dt

= λcSc
Ic
N

− ρ(γc + πc)Ic − µIc − δIc (3.58)

dIa
dt

= λaSa
Ia
N

− ρ(γa + πa)Ia − µIa + δIc (3.59)

dRc

dt
= ργcIc − αRc + ρrγr

cI
r
c − µRc − δRc (3.60)

dRa

dt
= ργaIa − αRa + ρrγr

aI
r
a − µRa + δRc (3.61)

dDc

dt
= ρπcIc − αDc + ρrπr

cI
r
c − µDc − δDc (3.62)

dDa

dt
= ρπaIa − αDa + ρrπr

aI
r
a − µDa + δDc (3.63)

dSr
c

dt
= α(Rc +Dc)− λr

c

Irc
N
Sr
c − µSr

c − δSr
c (3.64)
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r
c − µIrc − δIrc (3.66)

dIra
dt

= λr
a

Ira
N
Sr
a − ρr(γr

a + πr
a)I

r
a − µIra + δIrc (3.67)

The age structure model with partial immunity and incorporation of

births and deaths represents an advanced framework that expands upon the

single age class model by considering the specific dynamics of disease transmis-

sion and progression within different age groups. By dividing the population

into children and adults, this model acknowledges the variations in suscepti-

bility, infection rates, and recovery rates that can occur between these distinct

age classes.

In this expanded model, a new parameter δ is introduced to quantify

the transition rate between the children and adult age classes. This parameter
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captures the natural aging process and the movement of individuals from one

age class to another, reflecting the ongoing population dynamics.

The mathematical equations governing the age structure model with

partial immunity and incorporation of births and deaths build upon the pre-

vious model but introduce additional differentiations for each age class. For

example, we now have separate equations to track the rate of change of the

susceptible population (S) in children (Sc) and adults (Sa). Similarly, the

equations for the infected population (I), recovered population (R), diseased

population (D), and the susceptible and infected populations in the reinfection

group (Sr and Ir) are tailored for each age class.

Upon closer examination of the system of equations, it becomes ev-

ident that the initial assumption of births occurring throughout the entire

population may not accurately align with real-world dynamics. To address

this discrepancy, we can refine the equations by considering that births only

occur among adults, as they are the ones biologically capable of giving birth.

Additionally, we assume that the natural death rate for children is zero.

To achieve a more realistic representation of the birth process, we in-

troduce the concept of an equal birth and adult death rate, denoted as µ. The

value of µ is determined by the transition rate between age classes, δ, and the

ratio of the children population, Nc, to the adult population, Na. This mod-

ification ensures that the birth process aligns with the biological capacity for

reproduction in the adult population and reflects the natural balance between

births and adult deaths.

By incorporating these refinements, we can enhance the model’s accu-

racy in mimicking real-world population dynamics, where births are limited
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to adults and children have negligible natural death rates. This updated rep-

resentation provides a more realistic portrayal of the birth process within the

population, enabling us to gain deeper insights into the interplay between

demographic factors and disease spread.

By incorporating the age-specific dynamics of disease transmission and

accounting for the interplay between children and adults, the age structure

model with partial immunity and incorporation of births and deaths provides

a more comprehensive framework for analyzing infectious diseases. With this

foundation, we can now shift our focus towards examining two important mea-

sures: the force of infection and disease incidence. These metrics enable us to

assess the intensity and impact of disease transmission within each age class

and the overall population, providing valuable insights into the dynamics of

infectious diseases within an age-structured population.
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Examining Force of infection and Disease incidence of partial immu-

nity models

1. Single Age Structure Models

Our analysis builds upon the absence of immunity model by incorpo-

rating partial immunity dynamics, enabling us to capture the occurrence of

multiple infections and account for birth and natural deaths. This extension

includes notable improvements, particularly in the calculation of the aver-

age force of infection and the modification of disease incidence calculations to
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accommodate re-infection dynamics. These refinements enhance our under-

standing of disease transmission within a single age class, allowing us to gain

more comprehensive insights into the spread of the disease.

The average force of infection serves as a key measure in understanding

the rate at which susceptible individuals become infected with the disease.

It considers both the transmission rate (λ) and the re-infection transmission

rate (λr). By summing two terms, namely the transmission rate multiplied by

the number of infected individuals (I), and the re-infection transmission rate

multiplied by the number of re-infected individuals (Ir), we obtain a compre-

hensive estimation of the force driving the spread of the disease. This approach

allows us to consider both initial infections and subsequent re-infections, pro-

viding a more accurate representation of disease transmission dynamics.

To normalize the average force of infection, we divide the sum by the

product of the total population size (N) and the time interval (T ) over which

the calculations are performed. This normalization accounts for the population

size and the duration of the analysis, ensuring that the force of infection is

expressed in a meaningful way. The resulting equation becomes:

F̃ =

∫ T

0
(λI + λrIr)dt

NT
(3.68)

Similarly, we modify the calculation of disease incidence, which repre-

sents the number of new symptomatic individuals occurring within a specific

time period, to incorporate re-infection disease incidence. The disease inci-

dence now comprises two components: the product of the power of infection

rate (ρπ) and the number of infected individuals (I), and the product of the

re-infection power of infection rate (ρπr) and the number of re-infected indi-
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viduals from the disease. The equation for disease incidence becomes:

D̃ =

∫ T

0
(ρπI + ρπrIr)dt

NT
(3.69)

Furthermore, when we extend these concepts to the age structure model

with partial immunity and incorporate births and deaths, we can examine age-

specific force of infection and disease incidence, allowing us to gain a deeper

understanding of how disease transmission and its impact vary across different

age groups.

2. Age Structure Models

In addition to extending the absence of immunity model to incorporate

partial immunity dynamics, we can further enhance our analysis by applying

the concepts of force of infection and disease incidence to an age structure

model. The age structure model recognizes the variations in susceptibility,

infection rates, and recovery rates that can occur between different age groups,

providing a more refined understanding of disease transmission dynamics.

In the age structure model, the force of infection is calculated separately

for each age class. We consider the transmission rates specific to children (λc)

and adults (λa), as well as the re-infection transmission rates (λr
c and λr

a) for

each age class. By multiplying these transmission rates by the respective num-

ber of infected individuals (I and Ir) in each age class, we obtain age-specific

contributions to the force driving the spread of the disease. Summing these

contributions provides a comprehensive estimation of the force of infection in

the age structure model, accounting for both initial infections and re-infections

within different age groups.
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To normalize the age structure model force of infection, we follow the

same procedure as in the single age class model. The sum of the age-specific

force of infection terms is divided by the product of the total population size

(N) and the time interval (T ) over which the calculations are performed. This

normalization ensures that the force of infection in the age structure model

is expressed in a meaningful way, considering the population size and the

duration of the analysis.

F̃ =

∫ T

0
(λcIc + λaIa + λr

cI
r
c + λr

aI
r
a)dt

NT
(3.70)

Similarly, we can modify the calculation of disease incidence in the age

structure model to incorporate re-infection disease incidence. Disease inci-

dence represents the number of new symptomatic individuals occurring within

a specific time period in each age class. We incorporate two components: the

product of the power of infection rate (ρπ) and the number of infected indi-

viduals (I), and the product of the re-infection power of infection rate (ρπr)

and the number of re-infected individuals from the disease. By summing these

age-specific components, we obtain the overall disease incidence in the age

structure model, accounting for both initial infections and re-infections across

different age groups.

D̃ =

∫ T

0
(ρ(πcIc + πaIa) + ρr(πr

cI
r
c + πaIa))dt

NT
(3.71)

By applying the concepts of force of infection and disease incidence to

the age structure model, we gain a more nuanced understanding of disease

transmission dynamics within different age groups. This enhanced analysis al-

lows us to capture age-specific variations in susceptibility, transmission rates,
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and disease burden, enabling us to develop targeted public health strategies

and interventions to control the impact of the disease on the population, par-

ticularly considering the potential for re-infections.

Having extended the absence of immunity model to incorporate partial

immunity dynamics and applied the age structure model to analyze disease

transmission, we can now examine the results obtained from these enhanced

approaches. By considering multiple infections, birth and natural deaths, and

age-specific factors, our analysis provides a comprehensive understanding of

disease transmission dynamics and its impact on different population groups.
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Variable Description unit
λ Infectious rate of susceptible population 1

people*days

λr Re-nfectious rate of susceptible population 1
people*days

µ Birth and Death rate 1
days

π Likelihood of infection progress to symptomatic state 1
days

πr Likelihood of re-infection progress to symptomatic state 1
days

γ = (1− π) Likelihhod of infection progress to asymptomatic state 1
days

γr = (1− πr) Likelihhod of re-infection progress to asymptomatic state 1
days

ρ Timescale that infections are contagious 1
days

ρr Timescale that re-infections are contagious 1
days

t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered(asymptomatic) people people
D Number of disease (symptomatic) people people
Sr Number of re-infected susceptible people people
Ir Number of re-infected people people
N Total number of people people

Table 3.3: In the table, the units of the variables and parameters in both the
partial immunity model without births and deaths and the partial immunity
model with births and deaths are provided. The variables, such as suscepti-
ble (S), infected (I), recovered (R), diseased (D), susceptible in the reinfection
group (Sr), and infected in the reinfection group (Ir), are measured in popula-
tion count (number of individuals). The parameters are expressed as per capita
rates, representing the rate of occurrence per individual per unit of time. These
units provide a clear understanding of the measurement scale and rate at which
the variables and parameters are considered in the partial immunity models,
facilitating the interpretation and application of the models in the context of
infectious disease dynamics.

3.3.3 Results

Our study focuses on exploring and comparing two models: the single

age class models and the age structure models. These models are designed

to examine the dynamics of disease transmission and share certain parameter

values and initial conditions. By investigating these models in parallel, we aim

to gain a comprehensive understanding of the impact of different modeling

approaches on our analysis and insights into disease spread. The comparison

between these models allows us to assess the influence of age-specific factors
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and population structure on disease transmission dynamics. Through this

comparative analysis, we can derive valuable findings that can inform decision-

making and contribute to the development of targeted strategies to mitigate

the spread and impact of Covid-19.

Single age class with Absence of Immunity

In our investigation of the single age class model with immunity, our

objective is to examine the influence of varying infection rates (0.1 and 2.0)

on disease dynamics. Within this model, individuals can experience two out-

comes following infection: they either become asymptomatic or progress to a

symptomatic state. The probability of progressing to the asymptomatic state

is 0.95, while the probability of transitioning to the symptomatic state is 0.05.

To maintain population equilibrium, we assume a timescale of 0.01 for the loss

of immunity post-infection, for both asymptomatic and symptomatic cases.

By conducting simulations over a 10-year period, we can observe the dynam-

ics of immunity over time. Additionally, we consider a contagious timescale

of 0.15, representing the duration during which individuals are infectious and

can transmit Covid-19.

To apply these models to a real-world scenario, our focus is specifically

on the city of San Francisco, utilizing population data from 2021. With an

estimated population of approximately 815,201 individuals, we initialize the

simulation with around 100 infected individuals, assuming no individuals are

classified as recovered or diseased at the beginning.

By incorporating these parameters and contextualizing the models for

San Francisco, we can simulate and analyze the spread of the disease, monitor



141

the progression of immunity, and derive insights into the potential for endemic

stability within the city. This approach enables us to assess the impact of dif-

ferent transmission rates on disease dynamics, providing valuable information

for understanding and managing the spread of the disease in the context of

San Francisco.
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Figure 3.18: The figure displays the simulation results from a single age class
model, demonstrating the influence of varying infection rates on the spread of
a disease within a population. When the infection rate is low, the number of
infections remains relatively limited, gradually increasing over time. The ma-
jority of infected individuals recover promptly, resulting in a small proportion
of symptomatic cases. However, as the infection rate increases, the number of
infections experiences a rapid upsurge, leading to a larger pool of infected indi-
viduals within the population. Despite the higher overall number of infections,
the proportion of symptomatic cases remains relatively small, indicating that
a significant portion of infected individuals either experience asymptomatic in-
fections or develop mild symptoms. Additionally, it is worth noting that the
model reaches a steady state, where the infection dynamics stabilize over time.
This suggests that the disease has reached an equilibrium within the population,
with new infections and recoveries balancing each other out. Furthermore, the
results reveal an interesting observation: at higher infection rates, the number
of symptomatic cases is low. This phenomenon is an indication of endemic
stability, where the disease persists in the population at a relatively stable level,
with a lower proportion of symptomatic cases over time.
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Our research findings indicate that when the infection rate among the

susceptible population is set to a very low value, the impact on the overall

population is minimal. In such scenarios, the transmission of Covid-19 occurs

slowly, resulting in a low number of infections and a small proportion of symp-

tomatic cases. Infected individuals tend to recover quickly, leading to a short

duration of infection.

However, increasing the infection rate among the susceptible population

leads to a notable rise in the number of infections within a shorter timeframe.

This higher infection rate results in a larger number of individuals contracting

Covid-19, including a higher proportion of asymptomatic cases. Our model

simulations indicate that a steady state is eventually reached, where Covid-

19 becomes contained within the population. This can be attributed to the

high level of infection and a reduced number of symptomatic cases, indicating

a state of endemic stability. It is worth noting that our model assumes the

hypothesis that the probability of progressing to a symptomatic state, π, is

the same for initial infections and reinfections.

It is important to acknowledge that our models have certain limitations.

They do not incorporate demographic factors such as birth and death rates,

assuming a constant population size throughout the simulation. Additionally,

the development of long-term immunity to Covid-19 is not considered in our

simulations. Instead, we focus on the possibility of reinfection due to the loss

of immunity after recovery. This simplification allows us to specifically analyze

the dynamics of disease transmission and isolate the impact of changes in the

infection rate on the spread of Covid-19.
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Age Structure with Absence of Immunity

In our investigation of the two-age class model with absence of immu-

nity, we explore various infections rate of susceptible population, similar to

the single age class model and immunity analysis. To account for age-specific

dynamics, we introduce a distinction between children and adults by assum-

ing different power of infection values: a lower value for children (πc) and

higher values for adults (πa). Specifically, we consider transmission rates of

πc = 0.005 and πa = 0.05. By incorporating these different power of infection

values for adults, we aim to understand how the level of infection contributes

to the stability of the disease within the population.

Furthermore, we account for different likelihood of infection progress to

asymptomatic state between children and adults. The likelihood of infection

for children is set to be approximately 0.995, while for adults, we consider

values of 0.95. This variation in likelihood of infection allows us to examine

the impact of different recovery dynamics on the overall disease dynamics.

Additionally, since this model considers loss of immunity, we set the loss of

immunity rate for both asymptomatic and symptomatic individuals in both

age groups to be 0.01.

To simulate the age transition from children to adults, we set the tran-

sition rate to be around 0.001 for children transitioning to adults, and 0 for

adults transitioning to other age groups, as this model focuses on the children-

to-adults transition.

In the context of San Francisco, we adapt the population data from

2021. Based on available information, the population of children between 0

and 2 years old in San Francisco was approximately 23,996, while the adult
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population was around 791,205. We use these population figures to initialize

the model, while maintaining similar initial conditions for the other compart-

ments as in the single age class model.

By considering these parameters and population data, our goal is to

gain insights into the dynamics of the disease and its endemic stability in a

population with distinct age groups.
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Figure 3.19: In this study, we investigate the impact of infection rates on
the dynamics of Covid-19 within a population that includes both children and
adults. Using an age structure model that does not consider immunity, we ana-
lyze important parameters such as the infection rate among susceptible individ-
uals, the probability of infection progressing to symptomatic or asymptomatic
states, the duration of immunity loss following infection for both symptomatic
and asymptomatic cases, and initial population values based on San Francisco’s
demographics. Our findings demonstrate an equilibrium state that reflects the
patterns observed in real-world Covid-19 outbreaks. Specifically, when infection
rates are low, no significant outbreaks occur. However, as the infection rates
increase, outbreaks become evident and spread within the population becomes
more pronounced. It is important to note that our model does not incorporate
the presence of immunity, which can significantly influence disease dynam-
ics. Additionally, the specific results are based on the parameters and initial
population values used in our study, which are specific to the context of San
Francisco.

Our analysis demonstrates that lower infection rates have minimal im-
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pact on the population, as they do not trigger outbreaks of Covid-19. Con-

versely, higher infection rates have a profound impact, leading to significant

outbreaks and a decrease in the total number of susceptible individuals. These

findings suggest that the population reaches a steady state, indicating the po-

tential for an endemic stability in the future.

However, to gain a more comprehensive understanding of the Covid-19

dynamics, it is crucial to delve deeper into the age structure model. By con-

ducting separate simulations for children and adults, we can acquire valuable

insights into how the virus affects each age group. Such a focused analysis

will provide us with a more nuanced perspective on the transmission patterns,

susceptibility, and potential risks associated with different segments of the

population.
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Figure 3.20: This figure illustrates the outcomes of the age structure model
(Susceptible-Infected-Recovered-Disease) when considering the dynamics of
Covid-19 in the absence of immunity. The model incorporates the specified ini-
tial conditions and parameter values to simulate the spread of the disease. The
figure is divided into two sections, with the left side representing the simulation
results for the children population and the right side depicting the simulation
results for the adult population. In the simulation for the children population,
we observe consistent patterns across different infection rates. There are no
outbreaks observed in this population, and the number of children remains con-
stant throughout the simulation period. This indicates that the transition from
the children age class to the adult age class does not occur in this model, as
the children population remains unaffected by the disease dynamics. On the
other hand, the simulation for the adult population closely aligns with the over-
all population results. The infection rates used in the simulation correspond
to the occurrence of outbreaks, mirroring the dynamics observed in the total
population. This suggests that the behavior and infection patterns within the
adult population heavily influence the overall trends and patterns in the age
structure model. The dynamics observed in the adult population have a signif-
icant impact on the spread and progression of the disease throughout the entire
population.

Our analysis of simulations using an age structure model has yielded

intriguing findings when comparing the dynamics of Covid-19 in adults and the

total population, which includes both children and adults. These observations

provide valuable insights and emphasize the significance of considering age-
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specific factors when managing the pandemic effectively.

Examining the simulations of the children population, we consistently

observe a distinctive pattern. Regardless of the infection rates tested, no

outbreaks occur among children, and their population size remains constant

throughout the simulation period. This suggests that the transition from the

children age class to the adult age class does not take place in this specific

model. The absence of outbreaks among children indicates either a lower

susceptibility to Covid-19 at a younger age or a different disease progression

that does not result in noticeable outbreaks.

These findings contribute valuable insights into the dynamics of Covid-

19. The age structure model implies that every individual in the population

is susceptible to contracting the virus at some point in their lives, regardless

of age. However, the simulations for children indicate a lower susceptibility

or milder symptoms, which aligns with real-world observations of children

experiencing less severe disease outcomes compared to adults.

In contrast, the simulations for adults closely align with the overall pop-

ulation results. The infection rates used in these simulations lead to outbreaks,

reflecting the dynamics observed in the total population. This indicates that

the behavior and infection patterns within the adult population strongly in-

fluence the overall trends and patterns observed in the age structure model.

The high susceptibility and potential for disease transmission among adults

significantly contribute to the overall disease dynamics.

These insights underscore the importance of implementing tailored strate-

gies and interventions that consider the unique vulnerabilities and behaviors of

different age groups in effectively managing the ongoing Covid-19 pandemic.
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While children may exhibit lower susceptibility or milder symptoms, it is cru-

cial to recognize the role of adults in disease transmission and implement

targeted measures to protect vulnerable individuals, such as older adults or

those with underlying health conditions.

Furthermore, it is essential to refine the model to achieve endemic sta-

bility. In the current model, the simulations for children do not reach endemic

stability. Therefore, it is crucial to consider the necessary conditions required

to achieve endemic stability. One of the potential considerations is increasing

the infection rate, as this has shown the presence of infected individuals and

the attainment of an endemic stability state in the simulations.

Single age class Partial Immunity without Birth and Death

This refined model introduces the concept of re-infection and incorpo-

rates it into the dynamics of the disease. Following the initial infection and

recovery (asymptomatic), individuals become susceptible to re-infection, al-

though the likelihood of re-infection is lower compared to the first infection.

Specifically, we use parameter values of π = 0.05 for the likelihood of first

infection and πr = 0.0125 for the likelihood of re-infection.

The model retains similar parameters for the probability of infection

progressing to asymptomatic and symptomatic states as the previous single age

class model with absence of immunity. These parameters govern the likelihood

of infection progress to asymptomatic state and transmission probabilities be-

tween infected and susceptible individuals.

The remaining parameters and initial conditions are consistent with

the previous single age model without immunity, capturing the population
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dynamics and initial states of susceptible, infected, recovered (asymptomatic),

and diseased (symptomatic) individuals.

By incorporating re-infection dynamics with a diminished power of in-

fection after recovery, this refined model allows us to explore the possibility

of multiple infections. This is particularly important for understanding the

long-term dynamics and stability of diseases such as COVID-19, where wan-

ing immunity and re-infection have been observed.

Through extensive analysis and simulations using this single age class

re-infection model, we can gain valuable insights into how the transmission

rate and the power of infection after re-infection influence the overall disease

dynamics. This expanded model provides a more comprehensive understand-

ing of the complex interplay between transmission, recovery, and re-infection

processes, offering insights into the potential impact on susceptible, infected,

recovered (asymptomatic), and diseased (symptomatic) populations.
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Figure 3.21: This figure presents a simulation of a single age class model
with partial immunity, specifically focusing on re-infection dynamics and ex-
cluding the consideration of birth and death processes. At low infection rates,
the impact on the population is minimal, with only a small number of in-
dividuals in the infected, recovered, re-infected susceptible, and disease com-
partments. However, as the infection rate increases, a transition occurs to a
steady state where the disease spreads extensively, resulting in a higher num-
ber of re-infections. The higher infection rate leads to a gradual decrease in
the susceptible population until it reaches zero, indicating that the disease has
spread to the majority of the population. These findings underscore the signif-
icant influence of infection rates on the dynamics of re-infection and highlight
the potential for disease spread in populations with higher levels of contagion.

In our analysis of the single age class model with partial immunity,

we made interesting observations regarding the dynamics of different com-

partments and their responses to varying infection rates. At low infection



153

rates, the population remains largely unaffected, with minimal numbers in the

infected, recovered, re-infected susceptible, and disease compartments. It’s im-

portant to note that the model does not consider the birth process, resulting

in a constant total population size throughout the simulation.

However, as the transmission rate increases, there is a significant shift

in the model dynamics. A transition occurs from an absence of infection to

a steady state where the disease spreads extensively, leading to re-infections.

The higher transmission rate increases the chances of individuals coming into

contact with infected individuals, resulting in a larger number of people ac-

quiring the disease. Consequently, the susceptible, infected, asymptomatic,

symptomatic, and re-infected populations gradually diminish over time until

they reach zero.

Simultaneously, the population of re-infected susceptible individuals

grows as those who have previously recovered become susceptible to re-infection,

highlighting the loss of immunity and the potential for re-infection within the

model. This indicates that the disease has been eradicated from the population

since there are no infected individuals or re-infections present. However, it’s

important to note that if the disease were to re-emerge, these re-infected sus-

ceptible individuals could lose their immunity and become susceptible again.

The infected population initially experiences a rapid increase as more

individuals become infected due to the higher transmission rate. However, as

the susceptible population diminishes and a significant portion of the popu-

lation recovers to the disease, the infected population eventually reaches its

peak and starts to decline. This decline occurs due to the combined effects of

asymptomatic and symptomatic disease.
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The number of asymptomatic individuals shows an intriguing pattern,

initially increasing and subsequently decreasing. This pattern arises from

the interplay between recovery (asymptomatic), symptomatic disease, and re-

infection dynamics. Initially, as the disease spreads and individuals recover,

the number of recoveries rises. However, as re-infections occur and the suscep-

tible population decreases, the number of recoveries starts to decline.

Our findings highlight the importance of considering re-infection dy-

namics and the potential loss of immunity when studying the spread and

impact of diseases. Specifically, in the re-infection model, as the transmission

rate increases, the disease eventually spreads throughout the entire population,

establishing a steady state where everyone becomes infected and is susceptible

to re-infection. These observations provide valuable insights into the dynamics

of diseases and their long-term implications.

Additionally, we observed that the simulation did not achieve endemic

stability. To attain endemic stability, one of the considerations was to increase

the infection rate, which ultimately resulted in the simulation reaching an

endemic state.

Age Structure Partial Immunity without Birth and Death

In our investigation of the two-age class model with partial immunity,

we examine the impact of different infection rates on the susceptible popu-

lation. Building upon the single age class model and absence of immunity

analysis, we introduce a distinction between children and adults by utilizing

different power of infection values. This differentiation allows us to explore

the stability of the disease within the population.
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To account for age-specific dynamics, we set a lower power of infection

(πc = 0.005) for children and a higher power of infection (πa = 0.05) for

adults. Additionally, we consider the re-infection power of infection values

(πr
c = 0.00125 and πr

a = 0.0125) to capture the possibility of re-infection after

recovery.

The likelihood of infection progressing to the asymptomatic state varies

between children and adults, with a value of approximately 0.995 for children

and 0.95 for adults. This discrepancy in recovery dynamics enables us to

examine the overall disease dynamics and its implications.

To simulate the transition from children to adults, we set the tran-

sition rate to be 0.001 for children transitioning to adults, while adults do

not transition to other age groups, as our focus lies on the children-to-adults

transition.

Taking into account the population data from San Francisco in 2021,

we initialize the model using the recorded figures. The population of children

aged 0 to 2 years old in San Francisco was approximately 23,996, while the

adult population was around 791,205. These population values serve as the

foundation for our model initialization, while maintaining consistent initial

conditions for the other compartments.

By considering these parameters and population data, our objective is

to gain valuable insights into the disease dynamics and understand its potential

for endemic stability within a population comprising distinct age groups.
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Figure 3.22: This figure illustrates total age class model with partial immunity
no birth and death processes demonstrate a similar trend to the single age
class model, with consistent disease dynamics. However, a notable difference
arises in the susceptible population. Unlike the single age class model where the
susceptible population reaches zero, the two-age class model maintains a non-
zero susceptible population due to the presence of two distinct age groups with
varying power of infection values. This highlights the importance of age-specific
dynamics in understanding the persistence of the disease and the potential for
continued transmission within the population.

The results of our analysis exhibit a similar trend to the single age class

model, indicating that the dynamics of the disease remain consistent. How-

ever, an interesting observation emerges regarding the susceptible population.

In contrast to the single age class model where the susceptible population

eventually reaches zero, in the two-age class model, we find that the suscep-
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tible population does not decline to zero. This deviation from the single age

class model can be attributed to the presence of two distinct age groups with

different power of infection values.

Similarly, we observed that the simulation did not achieve endemic

stability. To attain endemic stability, one of the considerations was to increase

the infection rate, which ultimately resulted in the simulation reaching an

endemic state.

Age structure
immunity

model partial
without births and deaths

Figure 3.23: The simulation results of the age structure model with partial im-
munity, without considering birth and death rates and separating children and
adults, reveal similar patterns as absence of immunity. On the other hand, the
simulation results for the adult population resemble those of the total popula-
tion model, showing similar trends and dynamics. These findings align with
our existing knowledge of Covid-19 dynamics and provide further evidence to
support our understanding. The simulation results demonstrate the stability
and reliability of our understanding of the disease’s behavior within different
age groups. In particular, the simulation of the adult population shows a steady
state, indicating that the disease has been eradicated from that age group.

Our analysis confirms that the simulation results for the children pop-

ulation in the two-age class model align closely with both the absence of im-

munity and immunity models. Similarly, the simulation results for the adult
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population resemble those of the total population model. Therefore, our anal-

ysis does not introduce any new significant findings that deviate from previous

observations.

In the simulation of the children population, we consistently observe

the absence of outbreaks regardless of the infection rates tested. The popu-

lation size of children remains constant throughout the simulation, indicating

either a lower susceptibility or a different disease progression in this age group

compared to adults.

Similarly, the simulation results for the adult population mirror those of

the total population model, indicating that the behavior of the adult popula-

tion strongly influences the overall trends observed in the age structure model.

These outcomes align with our existing understanding of Covid-19 dynamics.

To achieve endemic stability in the model, it is crucial to refine the

model by incorporating interactions between the two age classes. By consid-

ering contact and potential disease transmission between children and adults,

we can enhance our understanding of transmission patterns within the popula-

tion. Additionally, identifying the necessary conditions for achieving endemic

stability requires a comprehensive analysis of factors such as infection rates,

population demographics, and intervention strategies.

While our analysis may not introduce novel findings, it reinforces and

corroborates the patterns observed in previous models, highlighting the stabil-

ity and reliability of our understanding of Covid-19 dynamics within different

age groups. However, the ultimate goal is to achieve endemic stability. Increas-

ing the infection rate alone does not lead to endemic stability in the model

incorporating partial immunity without considering birth and death rates.



159

Adjusting parameters such as the time scale of immunity loss, the power of

infection for subsequent infections, and the subsequent infection rate does not

result in significant changes either.

To establish the necessary conditions for endemic stability, analytical

calculations and evaluations of the model are essential. These calculations can

help determine the specific requirements for achieving endemic stability, pro-

viding valuable insights into the dynamics of disease transmission and control.

Our analysis reinforces the need for ongoing research and refinement of

models to improve our understanding of disease dynamics and inform effective

strategies for managing infectious diseases like Covid-19.

Single age class Partial Immunity with Birth and Death

In our analysis of the partial immunity model with consideration of

birth and death dynamics, we enhance the previous model by incorporating

the natural processes of population growth and mortality. By introducing birth

and death rates into the model, we aim to capture the realistic scenario where

new individuals enter the population through births, while existing individuals

depart through natural deaths.

By including birth and death rates of 0.005, which represent equal

rates of new births and natural deaths, we are able to explore the impact of

these factors on the dynamics of the disease. New births contribute to the

susceptible population, introducing a continuous influx of individuals who are

vulnerable to the disease. On the other hand, natural deaths reduce the total

population and have implications for all compartments of the model, including

the susceptible, infected, recovered, and diseased populations.
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Through the incorporation of birth and death rates, our analysis pro-

vides a more comprehensive understanding of the long-term implications of

disease transmission, recovery, and population dynamics. We can observe how

the interplay between these factors influences the stability and trends of the

susceptible, infected, recovered, and diseased populations over time. This re-

fined model enables us to evaluate the potential impacts of the disease on

population growth, as well as the overall health and well-being of the popula-

tion.
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Figure 3.24: The analysis of partial immunity with birth and death dynamics in
the age structure model reveals intriguing patterns and dynamics. The incor-
poration of birth processes introduces a dynamic interaction between disease
transmission and population growth, leading to fluctuations in the suscepti-
ble population before reaching a stable state. Additionally, the population of
re-infected susceptible individuals initially increases but eventually stabilizes.
Furthermore, the simulation results indicate that the model has reached a steady
state with a low number of symptomatic cases, suggesting an endemic state.
This suggests that the population has acquired immunity, and those who were
previously infected have developed protection against further infections. As a
result, the re-infected population eventually diminishes and reaches zero, indi-
cating that only individuals who have never been infected with Covid-19 before
are susceptible to the disease.

In our analysis of the single age class model with partial immunity,

birth, and death dynamics, we have uncovered intriguing patterns that provide

new insights into the dynamics of the disease. While we still observe similar



162

overall trends as in previous models, the inclusion of birth and death processes

introduces additional complexities and dynamics to the epidemic dynamics.

One notable distinction is the behavior of the susceptible population.

As the infection rate increases and the disease spreads, the susceptible pop-

ulation initially decreases, consistent with our previous findings. However,

the introduction of birth processes means that new individuals are continu-

ously added to the population. Consequently, when the susceptible population

reaches a lower value, it starts to increase again due to the birth of newborn in-

dividuals. This interplay between disease transmission and population growth

creates a dynamic feedback loop that influences the course of the epidemic.

The continuous addition of new susceptible individuals can sustain the spread

of the disease and potentially lead to fluctuations in the susceptible population

over time.

Regarding the re-infected susceptible population, we observe an initial

increase followed by a relatively stable phase. As individuals who have re-

covered from the disease become susceptible to re-infection, the population of

re-infected susceptible gradually rises. However, it eventually reaches a point

where it stabilizes. The decrease in the re-infected susceptible population can

be attributed to natural deaths or a reduction in the number of individuals

becoming re-infected. The re-infected transmission rate, which determines the

probability of re-infection, plays a significant role in shaping the dynamics of

the re-infected susceptible population. Different re-infected transmission rates

can result in varying levels of susceptibility to re-infection and influence the

overall spread and persistence of the disease.

Importantly, we observe that the re-infected population eventually goes
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to zero, indicating that individuals who have been infected with Covid-19 once

or more acquire some level of immunity. However, those who have not been

previously infected remain susceptible to infection. This highlights the dy-

namic nature of partial immunity and the finite duration of protection against

re-infection. Over time, individuals who have been re-infected may lose their

immunity, making them susceptible to subsequent infections.

The findings from studying the interplay of different age classes in the

model can provide a deeper understanding of the disease dynamics. By divid-

ing the population into multiple age classes, we can investigate how different

age groups interact, potentially leading to variations in disease transmission,

susceptibility, and re-infection dynamics. This understanding can inform the

development of targeted strategies for disease control and prevention, tailored

to the specific dynamics of different age groups within the population.

Age Structure Partial Immunity with Birth and Death

In this enhanced version of the age structure model, we incorporate

the dynamics of birth and death, which were absent in the previous model

with partial immunity. By including these factors, our objective is to create a

more realistic simulation that better captures the complexities of population

dynamics in the context of disease transmission. In this updated model, only

adults contribute to the birth process, resulting in a birth rate of µ ·Na, where

µ is defined as δ · Nc

Na
. Additionally, we assume a death rate of zero for children.

The introduction of birth and death dynamics allows us to investigate

how these natural population processes interact with the dynamics of disease

transmission and collectively shape the overall population structure. New
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births contribute to the susceptible population, introducing individuals who

are vulnerable to the disease. Conversely, natural deaths reduce the total pop-

ulation size and have an impact on all compartments of the model, including

the susceptible, infected, recovered, and diseased populations.

By considering these demographic factors, we can explore how changes

in birth and death rates influence disease dynamics and population outcomes.

The birth rate affects the rate at which susceptible individuals are added to

the population, potentially increasing the pool of individuals who can contract

the disease. On the other hand, natural deaths decrease the overall population

size, which can have implications for disease spread and the recovery of the

population.
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Figure 3.25: The figure depicting the age structure model with partial immu-
nity, where birth is represented by µ = δNc

Na
and µc = 0, reveals interesting

dynamics. Similar to previous models, we observe the occurrence of an out-
break as we increase the infection rate. However, a distinctive feature emerges
in this model: the disease is eventually eradicated, as both the infected and
re-infected populations converge to zero. This signifies that there is no active
disease present in the population, and individuals have acquired immunity.

The age structure model with partial immunity, incorporating birth

dynamics represented by µ = δNc

Na
and µc = 0, exhibits intriguing dynamics

that deepen our understanding of disease spread and immunity acquisition.

Similar to previous models, an outbreak occurs as we increase the infection

rate, resulting in a rise in the number of infected individuals. However, a

notable distinction arises in this model: the disease ultimately gets eradicated,
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leading to both the infected and re-infected populations converging to zero.

This implies a complete absence of the disease in the population and signifies

the acquisition of immunity by individuals.

The eradication of the disease in this model can be attributed to multi-

ple factors. First, the interplay between transmission dynamics and immunity

acquisition plays a pivotal role. As the infection rate rises, susceptible individ-

uals become infected, leading to a surge in the infected population. However,

as infected individuals recover, they develop partial immunity, reducing their

susceptibility to re-infection. This gradual accumulation of immunity across

the population acts as a protective barrier, gradually depleting the pool of

susceptible individuals and impeding the further spread of the disease.

Additionally, the introduction of birth dynamics into the model con-

tributes to the ultimate eradication of the disease. The birth rate, determined

by µ = δNc

Na
, adds new susceptible individuals to the population. However,

as the disease spreads and immunity is acquired, the susceptible population

gradually diminishes over time. This decline in susceptibility, coupled with

the absence of re-infection, eventually leads to the complete eradication of the

disease.

It is important to note that this model does not exhibit a steady state,

as the disease is ultimately eradicated rather than reaching an equilibrium.

This highlights the dynamic nature of disease dynamics and the potential

for disease elimination through immunity acquisition. To achieve endemic

stability, we increase the infection rate and observe the behavior of the model.

When this is done, we observe that the model attains endemic stability.
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Figure 3.26: The figure presented depicts the dynamics of disease transmission
in the age structure model with partial immunity and birth/death dynamics. In
this model, we set µc = 0 to exclude children from the analysis, and µ = δNc

Na
,

where µ represents the birth rate in relation to the number of adults (Na) and
the proportion of infected individuals (Nc). Interestingly, when examining the
simulation results for children, we observe no outbreak as we increase the in-
fection rates. This suggests that the disease transmission dynamics among
children do not contribute significantly to the overall spread of the disease.
Consequently, the impact of the disease on the child population may be rela-
tively limited in this particular model configuration. In contrast, when focusing
on the adult population, we observe similar results as those observed in the to-
tal population. This implies that adults play a crucial role in influencing the
dynamics of the disease. The susceptibility of adults to Covid-19 appears to
be higher, leading to a greater likelihood of outbreaks occurring among this
age group. The interplay between infection rates, susceptibility, and the inter-
actions among adults contribute to the observed disease dynamics in the age
structure model.

The dynamics of disease transmission in an age structure model with

partial immunity and birth/death dynamics, where µc = 0 and µ ∗ Na, with

µ = δNc

Na
. This model configuration allows us to gain valuable insights into the

role of different age groups in influencing the spread and impact of the disease.

When we focus on the simulation results for children, we observe an

intriguing finding: there is no outbreak as we increase the infection rates.
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This suggests that the transmission dynamics among children alone do not

contribute significantly to the overall spread of the disease in this particular

model. It is important to note that the absence of an outbreak in children does

not mean they are immune or unaffected by the disease. It simply indicates

that the transmission patterns and interactions within the child population

are not driving the observed outbreak dynamics.

In contrast, the simulation results for adults reveal a different scenario.

We observe similar trends in the dynamics of the disease as those observed

in the total population, suggesting that adults have a more pronounced in-

fluence on the disease dynamics compared to children. This finding implies

that adults are more susceptible to Covid-19, leading to a higher likelihood of

outbreaks occurring among this age group. The interplay between infection

rates, susceptibility levels, and interactions among adults play a significant

role in shaping the observed disease dynamics in the age structure model.

We observe similar pattern that the model does not attain endemic

stability. In order to achieve this, we need to consider increasing the infection

rate. When done so, we observe that the model reaches an endemic stability

with very few number of infected people.

Single Age Class Models Force of Infection and Disease Incidence

In our analysis of the force of infection and disease incidence, we com-

pare the average values between the single age class and two-age class models.

This comparison allows us to understand the factors that contribute to the dis-

ease reaching an endemic state in the population under absence of immunity

and partial immunity. By examining these metrics, we can gain valuable in-
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sights into the conditions required for the disease to establish a stable presence

within the population.
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Figure 3.27: The figure illustrates the impact of immunity and birth/death pro-
cesses on disease dynamics. Without immunity, increasing infection rates lead
to a rise in disease incidence, eventually reaching a plateau indicating endemic
stability. Partial immunity significantly reduces disease incidence, and consid-
ering birth/death processes further decreases it. In the partial immunity model
without birth/death, the disease is eradicated, and everyone becomes re-infected
susceptible. This absence of reinfection cycles leads to a constant number of
symptomatic individuals and endemic stability.

In our study of the single age class model without immunity, we have

made interesting observations regarding the relationship between the infection

rate, force of infection, disease incidence, and disease stability.

We found that as the infection rate increases in the absence of im-
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munity, there is a corresponding rise in the force of infection. The force of

infection represents the rate at which susceptible individuals become infected

per unit time and is influenced by factors such as contact patterns and dis-

ease infectiousness. With a higher infection rate, more individuals come into

contact with infected individuals, leading to an increased force of infection.

This increase in the force of infection also results in a higher disease in-

cidence, which measures the number of new cases within a specific population

over time. As more individuals become infected due to the increased force of

infection, the disease incidence rises. However, we observed that this upward

trend eventually reaches a plateau, indicating the attainment of endemic sta-

bility. At this point, the disease becomes endemic within the population, and

the incidence remains relatively constant over time.

Moving on to the partial immunity model, where individuals have ac-

quired partial immunity through previous infections, we noticed a greater de-

crease in the magnitude of disease incidence compared to the model without

immunity. The presence of partial immunity reduces the susceptibility of pre-

viously infected individuals, resulting in a dampening of disease incidence and

mitigating the overall impact of the disease.

When we introduced birth and death dynamics into the partial immu-

nity model, we observed a slight decrease in the magnitude of disease incidence.

The interplay between births and deaths influenced disease dynamics, leading

to a smaller decrease in disease incidence compared to the partial immunity

model without these dynamics. The introduction of births contributes to a

susceptible population, increasing the pool of individuals at risk of infection,

while deaths reduce the overall population size, limiting the spread of the
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disease. Thus, considering birth and death processes slightly decreases the

magnitude of disease incidence.

It is worth noting that in our previous analysis of the partial immu-

nity model without birth and death processes, we observed the eradication of

the disease, indicating that everyone in the population had acquired immu-

nity. However, when birth and death dynamics were incorporated, the disease

persisted, although at a reduced magnitude. This suggests the existence of

a continuous cycle of infection and partial immunity, leading to a constant

number of symptomatic individuals and establishing endemic stability.

These findings highlight the importance of understanding the interplay

between infection rates, force of infection, disease incidence, and the influence

of immunity, birth, and death processes. Such understanding can provide valu-

able insights for public health interventions and strategies aimed at controlling

the spread of diseases and safeguarding vulnerable populations.
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Age Structure Models Force of Infection and Disease Incidence
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Figure 3.28: This figure depicts the effects of immunity and demographic fac-
tors on the dynamics of COVID-19 within an age structure model. The left
panel represents the absence of immunity, where disease incidence initially
increases with the infection rate and eventually reaches a plateau, indicating
endemic stability. Notably, without immunity, the peak of disease incidence
is considerably higher. In the right panel, we explore the scenario of partial
immunity and consider two cases: one without incorporating birth and death
processes and the other with their inclusion. When birth and death processes
are not considered, the presence of partial immunity acquired from previous
infections leads to a reduction in the peak of disease incidence. This high-
lights the role of immunity in mitigating the impact of the disease. However,
when birth and death processes are included in the model, the results align with
the scenario of partial immunity without considering these demographic fac-
tors. This suggests that there is no active disease present in the population,
and symptomatic cases reach an endemic stability. The inclusion of birth and
death processes further contributes to the overall dynamics of the disease by
accounting for changes in population size over time.
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Our investigation into the impact of partial immunity on disease dy-

namics within an age structure model has yielded fascinating insights, partic-

ularly when considering the incorporation of birth and death processes.

In line with the single age class model, we confirm that as the infection

rate increases, there is an initial surge in disease incidence, indicating a higher

number of new cases in the population. However, as the infection rate contin-

ues to rise, we observe a plateau in the peak of disease incidence, indicating

the attainment of endemic stability. This suggests that the disease has reached

a state where the incidence remains relatively constant over time.

When examining the scenario of partial immunity, we discover distinct

outcomes depending on whether we include birth and death processes in the

model. Without considering these demographic factors, we observe a signif-

icantly greater reduction in the peak of disease incidence compared to the

absence of immunity model. This reduction is attributed to the presence of

individuals who have acquired partial immunity through previous infections,

leading to a lower susceptibility to the disease and dampened disease incidence.

The decline in the peak of disease incidence highlights the role of partial im-

munity in mitigating the disease’s impact.

However, when we incorporate birth and death processes into the model,

the results align with the scenario of partial immunity without considering

these demographic factors. This suggests the absence of active disease in the

population, with symptomatic cases reaching endemic stability. The inclusion

of birth and death processes further contributes to the overall dynamics by

accounting for changes in population size over time.

Furthermore, our findings indicate that due to a lower power of infection
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and subsequent infection rate among children, a higher proportion of infected

children become asymptomatic, leading to a lower number of symptomatic

cases in the population.

These insights underscore the complexity of disease dynamics within an

age structure model and emphasize the interplay between immunity, birth and

death processes, and disease incidence. They highlight the importance of con-

sidering these factors in understanding and managing the spread of infectious

diseases. The knowledge gained from this analysis can inform the development

of targeted strategies and interventions to effectively control and mitigate the

impact of diseases like COVID-19 in populations with diverse age structures.
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3.4 Discussion

3.4.1 Immunity

Polio, primarily affecting children under 5, exhibits distinct character-

istics in its transmission dynamics and disease burden. Our analysis of polio

dynamics revealed several important findings. When the infection rate is low,

the impact on the population is minimal, resulting in a low number of infec-

tions and symptomatic cases. However, as the infection rate increases, the

disease burden intensifies, leading to more infections within a shorter time

frame.

The interplay between population dynamics, such as new births and

natural deaths, also influences the spread of polio. In scenarios with equal

birth and death rates, the susceptible population initially decreases as more

individuals become infected and recover. However, over time, the susceptible

population gradually increases due to new births, while the number of infected

individuals reaches a steady state. This equilibrium is crucial for understand-

ing the long-term dynamics of polio.

In the refined model considering births from the adult population and

no deaths among children, we observed the eradication of polio as the number

of infected individuals eventually reduced to zero. Interestingly, the analysis

indicated that children were less likely to become symptomatic when infected

with polio compared to adults. The model highlighted the importance of

asymptomatic cases among children, contributing to the reduction in disease

incidence. However, it also demonstrated that children who were not infected

during childhood remained susceptible as they transitioned into adulthood,
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indicating the potential for re-emergence of polio.

Furthermore, the age structure model provided valuable insights into

the interaction between age groups and disease dynamics. Children exhibited

a higher susceptibility to polio, with a relatively low number of symptomatic

cases even at higher infection rates. Conversely, adults had a greater likelihood

of experiencing symptomatic disease and potential paralysis. This age-specific

analysis shed light on the differential impacts of polio within each age group.

Analyzing historical data, we observed that the prevalence of polio was

lower in the past when children were exposed to the disease at a younger age

due to poor sanitation. This exposure led to the development of immunity,

resulting in a larger population with polio immunity. However, improvements

in sanitation reduced children’s exposure to polio, leading to a larger suscep-

tible population. As these individuals grew up and became adults, they were

more likely to experience symptomatic disease and paralysis due to their lack

of previous exposure and immunity.

These findings have significant implications for polio control strategies.

Vaccination programs targeting children under 5 are crucial in reducing polio

transmission and protecting vulnerable populations. Additionally, ensuring

high vaccination coverage among adults can help prevent symptomatic cases

and long-term consequences. Population immunity plays a critical role, and

maintaining high immunization coverage and hygiene practices are key in con-

trolling the spread of polio and protecting vulnerable individuals.



177

3.4.2 Absence of Immunity and Partial Immunity

When studying the spread of Covid-19, it becomes evident that a sin-

gle age class model is insufficient to capture the complexity of the disease

dynamics. In reality, interactions between individuals of different ages play

a crucial role. Children, for instance, have shown to be less susceptible to

the virus compared to adults. Their immune systems are often more resilient,

allowing them to mount effective defenses against the virus and resulting in

a higher likelihood of asymptomatic infections. This characteristic has signif-

icant implications for disease transmission, as asymptomatic individuals can

unknowingly spread the virus to others, contributing to the overall spread of

the disease.

To create a more accurate model that mimics real-world scenarios, it

is essential to consider factors such as birth and death rates. Births introduce

new susceptible individuals into the population, while deaths remove individ-

uals from the population altogether. These factors are particularly relevant

in the context of Covid-19, as they contribute to the overall dynamics of the

disease.

Incorporating birth and death rates into the model allows us to observe

the long-term effects of the disease. Over time, as individuals are infected and

recover, they develop partial immunity, which reduces their likelihood of be-

ing re-infected and experiencing severe symptoms. This gradual acquisition

of immunity, coupled with the ongoing birth and death processes, can lead to

disease eradication. As the number of infected individuals decreases, the dis-

ease reaches a state of endemic stability, where the occurrence of symptomatic

cases becomes less frequent.



178

By incorporating an age structure model, we gain valuable insights into

the differential impact of Covid-19 on different age groups. It becomes evident

that the likelihood of infection progressing to a symptomatic state increases

with age. Adults, who generally have more developed immune systems but

may also have underlying health conditions, are more prone to experiencing

severe symptoms and complications. Therefore, they contribute significantly

to the overall incidence of the disease.

Interestingly, when considering re-infection, the likelihood of progress-

ing to a symptomatic state is lower compared to initial infection. This suggests

that individuals who have already been infected and experienced symptoms

have built some level of immunity, which provides a degree of protection upon

subsequent exposure to the virus. Consequently, their re-infection is more

likely to result in a milder course of illness or even an asymptomatic infec-

tion. This phenomenon contributes to a decrease in disease incidence as the

epidemic progresses.

Breaking down the analysis by age groups, we find that children have

a lower likelihood of progressing to a symptomatic state upon subsequent re-

infection compared to adults. This can be attributed to their robust immune

responses, which enable them to effectively control the virus and minimize

the severity of symptoms. As a result, the overall disease incidence is sig-

nificantly reduced, as a larger proportion of infections in the population are

asymptomatic or mild among children.
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Chapter 4

Conclusion

In recent years, infectious diseases have posed significant challenges

to global public health. Understanding the dynamics of disease transmission

is essential for developing effective control strategies and mitigating the im-

pact of these diseases on populations. Our analysis of polio, bubonic plague

during the Second Pandemic, and COVID-19 sheds light on the complex inter-

play between biological factors, population dynamics, and historical context

in shaping disease burden and transmission.

Polio, a viral disease primarily affecting children under 5, exhibits dis-

tinct characteristics in its transmission dynamics. Our study reveals that when

the infection rate is low, the impact on the population is minimal, with a low

number of infections and symptomatic cases. This finding underscores the

importance of maintaining low infection rates through vaccination programs

targeting children under 5. By protecting this vulnerable age group, we can

reduce transmission and prevent the long-term consequences of the disease.

Furthermore, our analysis highlights the role of population dynamics,

including birth and death rates, in shaping polio transmission. In scenarios
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where birth and death rates are equal, the susceptible population initially

decreases as more individuals become infected and recover. However, over

time, the susceptible population gradually increases due to new births. This

equilibrium between births and infections is critical in understanding the long-

term dynamics of polio and the potential for disease eradication.

In the refined model considering births from the adult population and

no deaths among children, we observe the eventual eradication of polio as the

number of infected individuals reduces to zero. This finding underscores the

importance of vaccination efforts targeting children and maintaining high im-

munization coverage among adults to prevent the re-emergence of the disease.

Moving on to the bubonic plague during the Second Pandemic, our

study supports the notion that both rodent and human transmission con-

tributed to its spread. The inclusion of rodents, particularly rats, as signifi-

cant players in the transmission dynamics of the disease is a crucial finding.

The Lynch-Oster model, which incorporates both rodent and human trans-

mission, demonstrates superior fit to observed mortality patterns compared

to other models. This suggests that rodents played a significant role in the

transmission dynamics of the bubonic plague.

However, it is important to acknowledge the limitations and uncertain-

ties associated with modeling infectious diseases. Our study was based on

specific assumptions and available data, which may introduce inherent biases.

Different modeling approaches and parameterizations may yield alternative re-

sults, and therefore, the choice of model should consider not only the goodness

of fit but also biological plausibility and prior knowledge about the disease.

The contradiction with Dean et al.’s paper highlights the complexity of



181

modeling plague transmission and underscores the need for further research.

Divergent findings among studies may arise due to variations in data sources,

model assumptions, or methodological approaches. To gain a more comprehen-

sive understanding of the transmission dynamics during the Second Pandemic,

additional data are needed. This includes information on ecological factors

that affect rodent populations, the dynamics of ectoparasites, and detailed

historical records that provide insights into human behavior and movement

patterns.

Turning to COVID-19, our analysis reveals that a single age class model

is insufficient to capture the complexity of disease dynamics. Interactions be-

tween individuals of different ages play a crucial role, with children exhibiting

a lower susceptibility to the virus compared to adults. This characteristic has

significant implications for disease transmission, as asymptomatic children can

unknowingly spread the virus to others.

To create a more accurate model that mimics real-world scenarios, it

is essential to consider factors such as birth and death rates. Births introduce

new susceptible individuals into the population, while deaths remove individ-

uals from the population altogether. These factors contribute to the overall

dynamics of the disease and its long-term effects.

Incorporating an age structure model into our analysis provides valu-

able insights into the differential impact of COVID-19 on different age groups.

Adults, who generally have more developed immune systems but may also have

underlying health conditions, are more prone to experiencing severe symptoms

and complications. This underscores the need for targeted interventions and

protective measures for this age group.
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Furthermore, our analysis demonstrates that individuals who have al-

ready been infected and experienced symptoms have built some level of im-

munity, resulting in a lower likelihood of progressing to a symptomatic state

upon subsequent re-infection. This phenomenon contributes to a decrease in

disease incidence as the epidemic progresses.

The findings highlight the importance of ongoing vaccination efforts,

surveillance, hygiene practices, and targeted interventions based on age-specific

factors in controlling the spread of COVID-19. Maintaining high immunization

coverage, particularly among vulnerable populations, is crucial for reducing

disease transmission and protecting individuals from severe illness.

Analysis of polio, bubonic plague, and COVID-19 underscores the com-

plexity of infectious diseases and the need for comprehensive approaches to un-

derstanding and controlling their transmission. By considering factors such as

age-specific susceptibility, population dynamics, and historical context, we can

develop more accurate models and inform evidence-based interventions. On-

going research, data collection, and collaboration among scientists and public

health professionals are essential for advancing our understanding of these

diseases and enhancing global preparedness for future outbreaks.
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