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ABSTRACT

THEORETICAL EPIDEMIOLOGY ANALYSIS OF PLAGUE, POLIO,
AND COVID-19 OUTBREAK

by
Vivian J. Goshashy

Spring 2023

Infectious diseases have been a persistent challenge to global health
throughout history, and they continue to pose a significant threat in the present
day. With the emergence of new diseases and the reemergence of existing ones,
understanding the transmission dynamics, and developing effective prevention
strategies are critical for public health. Mathematical modeling has proven
to be a valuable tool in studying infectious diseases, allowing researchers to
simulate and analyze various scenarios to gain insights into disease spread and
inform public health policies. This paper provides an overview of the different
types of mathematical models utilized in infectious disease modeling, focus-
ing on their application in studying the spread of complex diseases such as
Plague, Polio, and Covid-19. Mathematical models can capture the intrica-
cies of disease transmission by incorporating factors such as population demo-
graphics, disease characteristics, and intervention strategies. By quantifying
these variables, researchers can simulate the dynamics of disease transmission
and assess the impact of various interventions, such as vaccination campaigns,
social distancing measures, or treatment protocols. To ensure the reliability
of these models, statistical techniques are employed to validate their accu-

racy and assess their goodness of fit to real-world data. Model fitting involves



comparing the simulated outputs with observed epidemiological data, allow-
ing researchers to refine their models and improve their predictive capabilities.
Moreover, understanding the stability of steady states in these models is cru-
cial in predicting the long-term behavior of an outbreak. By analyzing the
stability of these states, researchers can determine whether an outbreak will
be self-limiting or persist within the population over time. By studying dis-
eases like Plague, Polio, and Covid-19, this research aims to provide valuable
insights into the spread of infectious diseases and contribute to the develop-
ment of effective intervention strategies. The findings from this study can
enhance our understanding of disease transmission dynamics and help inform
public health efforts to prevent and control future epidemics. Ultimately, the
goal is to minimize the impact of infectious diseases on populations worldwide

and ensure the well-being of individuals and communities.
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Chapter 1

Introduction of Epidemiology

Analysis

1.1 Mathematical Modeling of Infectious Dis-
eases

Infectious diseases have long been a major global health challenge, with
new diseases constantly emerging and existing ones are resurging. From his-
tory, some of the earliest known infectious diseases include tuberculosis, lep-
rosy, and malaria, which were prevalent in ancient times [1]. Further, in the
14" century, an estimated 25 million people in Europe died of the bubonic
plague also known as the Black death [2]. In the 19th century, significant
progress was made in the understanding and control of infectious diseases.
The discovery of bacteria and viruses, and the development of vaccines and
antibiotic, helped to prevent and treat many infectious diseases. Despite these

advances, infectious diseases still remain a major health challenge, especially



in developing countries. For instance, we have observed new diseases emerg-
ing such as HIV/AIDS, Ebola, Polio, and Covid-19, which have negatively
impacted the global economy [1] [3] [4] [5].

In the 1950s and 1960s, researchers developed models to understand the
transmission dynamics of sexual transmitted infections such as syphilis and
gonorrhea diseases and evaluated the impact of different prevention strategies
[6]. These models were used to inform public health policies and to design
clinical trials of new treatments. Further, these models were adapted and
developed in the study of HIV/AIDS transmission in the 1970s and 1980s [6].
Today, scientists use mathematical models to study a wide range of infectious
diseases and epidemiology.

Mathematical modeling is used to uncover patterns in epidemics, to ex-
trapolate epidemic behaviors, and to study the effect of interventions such as
immunization, quarantine, social distance, and hygiene measures. Mathemat-
ical modeling of infectious diseases uses mathematical equations to describe
and analyze the spread and control of diseases within populations. These mod-
els are set to represent the different classes of individuals in a population such
as susceptible, exposed, infected, recovered(asymptomatic or symptomatic),
and dead. There are several main types of mathematical models. The most
widely studied are SIR type models, which tracks the number of susceptible,
infected, and recovered individuals in a populations over time and represents
with system of ODEs. In addition, agent-based models are a class of models
that simulate the behavior of individual agents such as people or animals and
the interactions between them to model disease transmission [7].

In recent times, with the emergence of complex diseases like Covid-19



and intricate transmission patterns, advanced models such as SEID, SIRD, and
SIRDSI are being employed to better understand the disease dynamics. The
SEID model, for example, allows for the prediction of the number of individuals
who are exposed but do not yet show symptoms and tracks the number of
either dead or disease (symptomatic), while the SIRD model accounts for
the possibility of asymptomatic and symptomatic transmission. The SIRDSI
model incorporates the concept of immunity decay, where individuals who have
recovered from the disease may become susceptible to infection again after a
certain period of time. Furthermore, these models are adaptable to investigate
the spread of other infectious diseases, such as plague and polio, which had
caused major outbreaks in different regions, such as Europe and United States.
By utilizing these models, we gain a deeper understanding of the transmission
patterns of infectious diseases and develop strategies to control their spread.
We then validate models using statistical techniques like Markov Chain Monte
Carlo and look at their measures such as Bayesian Inference Criterion (BIC)
and root mean squared error (RMSE) and allows for an assessment of their
goodness of fit and comparison of their performance. Moreover, mathematical
models are used to determine the stability of the steady states. Stability of
the steady states provides information about whether an outbreak will be self-
limiting or will persist in the population over time. Stability of steady states
allows scientists to predict the long-term behavior of a disease outbreak. We
will investigate the classical SIR model and determine the stability. This
analysis is valuable for public health officials in determining if an outbreak
is self-limiting. In such cases, they can focus on implementing short-term
measures to reduce transmission and control the outbreak until it subsides.

On the other hand, if an outbreak is predicted to become pandemic; then,



they would need to focus on long-term interventions and measures to prevent
the spread of the disease in the population.

This project aims to provide insights into the spread of infectious dis-
eases and determining the most effective interventions to avoid an epidemic
outbreak. This is going to be achieved by considering various mathematical
models of a selection of infectious diseases and fitting them to the available
data. However, these models are based on assumptions about disease transmis-
sion; thus, their accuracy depends on the quality of the data used to build them
and the assumptions made. Our goal is that the findings from this research
will enhance our knowledge of how infectious diseases spread and potentially

aid in efforts to prevent their spread.



1.2 Analyzing the classical SIR Model

The classical SIR model is a widely used mathematical model used to
study the spread of infectious diseases in a population [8]. The model assumes
that the population can be divided into three compartments: Susceptible (S),
Infected (I), and Recovered (R), with the total population size N = S+ 1+ R
assumed to be constant, and individuals can move from one compartment
to another over time. The classical SIR model is based on several key as-
sumptions, individuals can only leave the susceptible group by being infected
and infected individuals can leave the infected group if they recover from the
disease and acquired immunity. Further, we assume that people in the pop-
ulation make random contact with one another, and there is a closed system
such that the population neither increases nor decreases. Lastly, there is no

vaccination [8] [9].

Figure 1.1: SIR Model Transitions - Illustration of inward and outward transi-
tions in a classical SIR model. The model captures the movement of individuals
between compartments, with inward transitions positively influencing the rate
of change and outward transitions negatively impacting it.



System of ODEs and Initial Conditions

The rate of change of the three populations (S, I, R) in the model
is described by a system of ordinary differential equations. The number of
susceptible individuals at time ¢ is denoted as S(t), the number of infected
individuals as I(t), and the number of recovered individuals as R(t). The rate
of change of these populations over time can be described by the following

system of differential equations.

ds

T —BS(t)1(t)

% = BS()I(t) — M (t) (1.1)
dR

— = M(D)

The specific description of the SIR model is shown above where [ repre-
sents the transmission rate and A is the recovery rate. In our model, we would
want to have I(¢) = 0. This means that there is disease free equilibrium.

Our initial conditions are:

S(0) = Sy > 0,1(0) = I > 0, R(0) = 0 (1.2)

The classical SIR model has only three compartments; thus, the rates of change
of these compartments must sum up to the total rate of change of the popu-
lation. The law of conservation is then used to understand whether the total
population is conserved or not. From the total populations size, we know that
N = S + I+ R. By taking derivative of both sides with respect to time, we
get [8] [10]:



dN dS dI dR
=ttt o= —BS)I(t) + BSE)I(t) — M (t) + X(t) =0 (1.3)

The equation describes that the total rate of change of the population
is equal to the sum of the rates of change of the three compartments. We
observe that %—JX = 0, this means that the total populations is conserved. The
coservation law help us to understand the dynamics of the disease transmission

and to identify factors that contribute to its spread [8].

Variable Description unit

B Transmission rate e —
people1 days

Recovered rate 3
ays

A

t Time days
S Number of susceptible people people
1 Number of infected people people
R Number of recovered people people
N Total number of people people

Table 1.1: Units of the variables and parameters in the SIR model.

Dimensional Analysis

Here we want to reduce the number of parameters and make the model
dimensionless. We focus on the Infected population, then the important pa-
rameter would be transmission rate which affects the qualitative behavior of
the solutions. We assume that time is measured in days, then we use the dif-
ferential equations to determine the units carried by each of the variables
and parameters in the model.

From the equation in the models, we observe that the left-hand side

have dimensions of number of people per time. This is also true for every term



in the equations. Further, we define new variables, x(t) as the fractional of the
population in the susceptible class and y(t) as the fractional of the population
in the infected class [8].
Now, we define arbitrary dimensionless variables,
S

I
T= Y= T =

N =t*p (1.4)

tl»—t| ~+

Using equation N = S + I + R, it follows that

1
N

= »

Next, we substitute equation [1.4] into the model equations,

S=aN,I=yNt=" (1.5)
1
This leads to,
d(zN) _
d(yN) (

B(xN)(yN) — A(yN)

We cancel the common factors N and g on both sides,

d:):__BN
dr quy
@_5]\7 A

x
dar  p Iz
We notice that the equation contains two remaining ratio of parameters

that we denote by the notations



N
Rgzﬁ—andMO:é
M M

We observe that these two are important quantities such that Ry is the
basic reproductive number. Thus, we rewrite our equations by substituting

new variables,

d
== —Roxy
" dr (1.6)
7, = fory — Moy
-

Identifying Steady States

Steady states show the equilibria of the equations. To determine whether
we have a disease-free equilibrium or a disease endemic state, we need to de-
termine steady states of the model. Let us observe equations [1.6] For steady
state to occur, we need fli—f =0 and Cc% = 0. Here we look at the equation above
that involves y and we use this equation to determine when y = 0 and when
y # 0. Therefore, using equations[1.6] we then have two steady states; disease
free-equilibrium and disease endemic state. The two equilibrium points of the
system are as follows [§]:

Here, we want I = 0. Since, x + y = 1 by conservation law, this leads
to x =1 — y. If we substitute x to Z—f from equation , leads to

dy

= Ro(1 —y)y — Moy = y[(Ro — My) — Roy]

Steady states satisfy 3¢ = 0. Thus, y[(Ry — M) — Roy] = 0.
1.Disease-free equilibrium points: A solution is observed where

y = 0 and, due to conservation, x = 1. This solution corresponds to a pop-



ulation without any infected individuals, leading to I(t) = 0 and S(t) = N,
where N denotes the total population size.

2. Disease Endemic equilibrium points: If the steady state of a
classical SIR model has non-zero infected individuals, i.e., I # 0, then the
value of x at the steady state is equal to %—g due to the conservation of the
total population size. Additionally, y at the steady state is equal to 1 — 1\%_
This implies that the disease is widely spread in the population.

A steady state is biologically feasible only if the reproductive number of
the disease, denoted by Ry, is greater than 1. In such a case, the disease is con-
sidered to be endemic, and the steady state with non-zero infected individuals
is stable. On the other hand, if Ry < 1, the only biologically feasible steady

state is the disease-free state where xy = 0, and the disease is eradicated.

DISEASE-FREE EQUILIBRIUM ENDEMIC STATE

y Yy

Figure 1.2: In the left hand side figure, Ry < 1 and My > Ry, such that we have
a disease-free equilibrium. The right hand side figure Ry > 1 and My < Ry,
the disease is at endemic state.
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Stability Analysis

To assess the stability of a system, we examine the Jacobian matrix,

defined as:
dfz  dfy
dt Tt
Jay =
dgz  dgy
dt  dt

The functions f(x,y) and g(z,y) in the Jacobian matrix represent the
rates of change of x and y with respect to time t. The Jacobian matrix
helps us to analyze the local behavior of the system around a specific point.
By calculating the determinant and trace of the Jacobian matrix, we can
determine the stability of the system.

By calculating the determinant and trace of the Jacobian matrix, we
can make determinations about the system’s stability. The determinant reveals
insights into the local stability of the system. If the determinant is positive, it
suggests that the system is stable, indicating that small perturbations around
the steady state will eventually converge back to it. Conversely, a negative
determinant implies an unstable system, where perturbations may grow over
time, leading to unpredictable behavior.

The trace of the Jacobian matrix is the sum of the diagonal elements
and can be used to identify the type of stability, such as stable nodes or
unstable saddles. For example, if the trace is negative and the determinant
is positive the equilibrium point is a stable node, indicating that the system
will converge towards that point from nearby initial conditions. Eigenvalues of
the Jacobian matrix also provide insights into the stability of the system. The
eigenvalues can be used to classify the equilibrium point as stable or unstable,

and the sign of the real part of the eigenvalues determines the nature of the



stability, such as oscillatory or asymptotic. By analyzing the eigenvalues of
the Jacobian matrix, we can gain a deeper understanding of the behavior of
the system near the equilibrium point.

Using the system of equations from dimensionless equations, we have,

—Roy —R0$
Ty =
Roy Rox — MO

1. Disease-free equilibrium points

0 —R,
Jay =Ja0 =

0 Ry— M,

we observe that
|J| = det|J| =0
with
ﬁ:tT(J):RO—M0<O

and A = 0.

This indicates that the equilibrium point is a saddle node.
2. Disease Endemic equilibrium points

Evaluating the Jacobian matrix at the equilibrium (%—g, ROR;(fWO), we find

My — Ry —M,

J(% Ro—Moy =
Rg’ R

My—Ry O

12



It follows that

7| = det|J| = —M2 + MyRy < 0

with

B=tr(J) =My — Ry >0

and Ay = Mo _ Bo o VZ0r0)Motro)

Therefore, this equilibrium point is a saddle node.

Numerical Simulation

The classical SIR model is commonly used to simulate the behavior of
a population during a disease outbreak. In order for an outbreak to occur,
at least one individual in the population must be infected with the disease.
Transmission of the disease is believed to occur through close contact between
individuals in the population. In this model, we assume that the population

size is N = 1000 people, the initial number of infected individuals is 1(0) = 1,

1

the transmission rate is 5 = 0.2(z -

), and the recovery rate is A = 5 days.

13



Classical SIR model simulation

10004 ===w=o — = Susceptible individuals
> S Infected individuals
\ Recovered individuals
h"
800 - \
\
\
\
A\
= 600 \
2 A
= \
= \
E_ LY
i \
400 A
.
N
S
F. e Sy —
200 - T e e -
D 4 ee———
T T T T T T T T T
0 20 40 60 80 100 120 140 160
Time(days)

Figure 1.3: Simulation of the classical SIR model demonstrates the temporal
evolution of susceptible, infected, and recovered individuals in a population.
As time progresses, the number of susceptible individuals gradually decreases,
while the number of infected individuals increases. The rate of deaths caused
by the disease follows the trend of the infected population, at a slower pace.
This simulation was conducted with a transmission rate () of 0.2 diay and a

recovery rate (\) of % days, reflecting the dynamics of the disease spread and
recovery.

Figure [I.3] shows that as time progresses, the number of susceptible
individuals in the population decreases while the number of infected individu-
als increases. In addition, the number of recovered individuals also increases,
although at a much slower rate than the number of infected individuals. This
simulation provides insight into how each population group changes over time

during an outbreak. Such information can be used to devise strategies to re-

14



duce the spread of the disease, with the ultimate goal of increasing the number
of susceptible or immune individuals in the population.

It should be noted that the classical SIR model has limitations and
assumptions. For instance, it assumes a homogeneous population, constant
population size, and a fixed transmission rate. Despite these limitations, it
remains a useful tool for understanding the dynamics of disease spread in

populations.

Force of infection and Disease incidence

The force of infection (F) is an important epidemiological concept that
measures the rate at which susceptible individuals acquire a disease within a
population and is influenced by various factors such as the pathogen’s viru-
lence, host susceptibility, and effectiveness of control measures. Disease inci-
dence is a measure of the frequency of new cases of a disease within a defined
population over a specific period, providing insight into the occurrence and
spread of infectious diseases and estimating the risk of acquiring the disease
within the population.

The average force of infection, denoted as (F), is calculated by inte-
grating the product of the transmission rate (§) and the number of infectious
individuals (I) over a specific time period (T). This integral is then divided
by the product of the total population size (N) and the duration of the time
period (T). Essentially, it provides an average value of the force of infection

over time.

P Jo (BI)dt

— (1.7)

15



Similarly, the average disease incidence, denoted as (D), is obtained by
integrating the product of the recovery rate () and the number of infectious
individuals (I) over a specific time period (T). This integral is also divided
by the product of the total population size (N) and the duration of the time

period (T). It provides an average value of the disease incidence over the given

time frame.
- YDt

5 X 1073 SIR Model
Q
Q
c
Q
=]
‘O
=
[ab]
W
®
[ab]
0
()

D 1 1 1 1 1 1

0 0.005 0.01 0.015 0.02 0.025 0.03

Force of infection

Figure 1.4: The force of infection (F) and disease incidence over time during a
simulated disease outbreak using the classical SIR model. The total population
size is 1000 individuals, with an initial infected population of 1 person. The
recovery rate is set at 1/10, while the transmission rate varies between 0 and
100 with a time step of 1.

16



Over time, the dynamics of infection and disease incidence follow dis-
tinct patterns. Initially, when the transmission rate of a disease is low, both
the force of infection (the rate at which susceptible individuals become in-
fected) and disease incidence (the number of new cases) remain relatively low.
This is because the disease is not spreading rapidly, and only a small portion
of the population is affected.

However, as the transmission rate increases during a certain period of
time, more individuals become infected, leading to a higher force of infection.
This means that a larger proportion of susceptible individuals are being ex-
posed to the disease, resulting in a relative increase in disease incidence. The
number of new cases rises, reflecting a growing outbreak.

As the outbreak progresses, the force of infection and disease incidence
may continue to increase, reaching a peak. The specific dynamics of the out-
break, such as the effectiveness of control measures or the development of
natural immunity, will influence whether the increase in transmission eventu-
ally slows down.

If effective control measures are implemented or a significant portion
of the population develops natural immunity. As a result, disease incidence
reaches a plateau, where the number of new cases remains relatively constant
over time. This plateau signifies a phase of the outbreak where the disease is
no longer rapidly spreading, and the number of infected individuals remains
fairly consistent.

Figure [1.4] illustrates these patterns, showcasing the relationship be-
tween the force of infection and disease incidence throughout the course of the

outbreak. It visually demonstrates the initial low levels, the increase during
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the outbreak, and the subsequent stabilization or decline depending on the
control measures and immunity factors involved. This idea is going to be re-
introduce in chapter 3 such that we examine criteria for endemic stability of

Polio and Covid-19 disease.
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1.3 Model fitting

Markov-Chain Monte-Carlo Simulation (MCMC)

MCMC is a powerful Bayesian method used for estimating the distri-
bution of parameters by randomly sampling them from a probabilistic space.
This technique is particularly useful in epidemiology models where there are
numerous unknown parameters. The distribution of parameters provides a
mathematical representation of all possible values of parameters and their
likelihood of occurrence [11] [12]. MCMC algorithms are iterative processes
where the future state depends on the current state process. The sequence of
events that are probabilistically related to one another, and the succession of
these steps is known as a Markov Chain. probability [11] [13]. Markov Chains
are used in MCMC to generate a sequence of parameter samples that represent
the posterior distribution of the parameters. By sampling from the posterior
distribution, we can estimate the most likely values of the parameters and

quantify the uncertainty associated with these estimates [11].

The MCMC method enables the estimation of parameters such as means,
variances, expected values, and exploration of the posterior distribution of
Bayesian models. Monte Carlo simulations refer to a technique that involves
sampling many random values from a posterior distribution of interest. This
process involves repeatedly generating random numbers to observe how fixed
parameters are estimated. Monte Carlo simulations provide an approximation
of a parameter when it is impossible or prohibitively expensive to calculate it
directly [12] |11].

In epidemiology, the MCMC technique is commonly utilized to fit de-
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terministic models to observed data and estimate unknown parameters. Typi-
cally, these models have a time-step of one day or one week, and the likelihood
of the observed data given the model parameters is evaluated as the prod-
uct of Poisson random variables. The prior distributions are often uniformly
distributed, and MCMC simulations are employed to derive the posterior dis-
tributions. However, MCMC algorithms are sensitive to their initial starting
point, and they often require a burn-in or warm-up phase to explore a promis-
ing part of the search space. After this phase, prior samples can be discarded,
and valuable samples can be collected.

In this process, Metropolis-Hastings’s algorithms are used, which in-
volve proposing a probability distribution to sample, then using an acceptance
criterion to decide whether the new sample is accepted into the chain or dis-
carded [13]. The acceptance criterion is how likely the proposal distribution
differs from the true next-state probability distribution. Model convergence
will be assessed using the Gelman-Rubin statistic, commonly used to deter-
mine if multiple chains of MCMC simulations have reached convergence and
are sampling from the same posterior distribution [14]. The Gelman-Rubin
statistic compares the within-chain variance to the between-chain variance of
the MCMC samples. If the chains have converged, the within-chain variance
should be similar to the between-chain variance. The statistic is calculated by
taking the square root of the ratio of the average of the within-chain variances
to the pooled variances across all chains. If the Gelman-Rubin statistic is close
to 1, it indicates that the chains have converged and are sampling from the

same posterior distribution [14].
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Bayesian Information Criterion (BIC)

BIC is a model selection method that uses the likelihood function and
is particularly useful in mathematical modeling when dealing with models that
have many parameters. The BIC introduces a penalty term that is propor-
tional to the number of parameters, helping to mitigate the risk of overfitting,

specifically:

BIC =In(n) x k — 2In(L),

where L represents the maximized value of the likelihood function of the
model, n represents the number of data points, and k represents the number

of free parameters that need to be estimated.

Mean Squared Error (RMSE)

The RMSE (Root Mean Square Error) is a commonly used metric for
evaluating the predictive accuracy of quantitative models. It measures the
dissimilarity between the predicted values generated by a model and the actual

observed values in a dataset. Mathematically, the RMSE is defined as:

In this equation, ¢; represents the predicted values, y; represents the
observed values, and n represents the total number of observations in the
dataset. By calculating the RMSE, we can determine how well a model fits

the data.
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Chapter 2

Analysis of Plague Outbreak in

Europe

In this chapter, we delve into the dynamics of bubonic plague epi-
demics using several mathematical models, including the Pneumonic model,
Lynch-Oster Rat Flea model, Keeling-Gilligan model, and Human Ectopara-
site model. These models allow us to examine how the disease spreads among
different populations, such as humans, rats, and fleas.

We begin by discussing the process of parameter estimation for these
models. This involves estimating important parameters like transmission rates,
carrying capacities, and death rates. To fit the models to observed mortality
data from various cities, we employ Bayesian inference techniques. Through
this fitting process, we obtain posterior distributions for the model parameters.
To assess how well the models fit the observed data, we use metrics such as the
Bayesian Information Criterion (BIC) and root mean squared error (RMSE).
These metrics help us evaluate the models’ ability to capture the observed

data and provide a basis for model comparison.

22



This chapter emphasizes the significance of understanding the assump-
tions and limitations of the models. Each model has its own specific focus and
assumptions, which may involve considering transmission through respiratory
systems, flea ecology, contact networks, or rodents. By fitting these models to
data from multiple cities, such as Givry, Florence, Eyam, Barcelona, Moscow,
and Malta, we can compare the dynamics of plague epidemics across different
locations and time periods. This comparison reveals variations in transmission
rates and flea ecology, shedding light on the diverse aspects of the disease’s
spread.

Lastly, we discuss the findings presented in Dean et al.’s paper, which
suggests that human ectoparasites were the primary vectors for plague during
the second pandemic, including the Black Death. However, in this chapter,
we introduce an additional model, the Lynch-Oster model, which explores the
population dynamics of rats and fleas over time. By incorporating this model,
we present a compelling argument that the pandemic was not solely caused by
human ectoparasites but also by infected rats. This highlights the importance
of considering multiple factors and populations in understanding the dynamics

of bubonic plague epidemics.

2.1 Overview of Plague Disease

Background of Plague Outbreaks

Plague is an extremely contagious disease that can result in severe
illness and fatalities in both humans and animals. It primarily affects wild

mammals and can lead to the death of vulnerable rodent species, cats, camels,
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and other mammals when it spreads from its reservoir host species. Plague is
caused by Yersinia pestis, a bacteria that is primarily found in small mammals
and their fleas. The bacteria were first discovered during the 1894 pandemic
that originated in China and spread to Hong Kong, where it was identified by
a French Pastorian bacteriologist. The pandemic is thought to have occurred
due to the spread of infected fleas over long distances, as they were carried
by rats and humans along trade routes |15]. The fleas multiplied by feeding
on their hosts, biting with increased frequency and agitation, and infested
new hosts when the original hosts died. Commensal domestic black rats and
brown sewer rats (Rattus rattus and Rattus norvegius) and their fleas (Xenop-
sylla cheopis) are considered the most important hosts and vectors involved
in human outbreaks, but many other flea species can transmit plague [16].

Plague has caused three major outbreaks in human history, each with
devastating mortality rates in various nations and continents. These pan-
demics had different origins and paths of spread. The first plague occurred in
541 AD, starting in central Africa and spreading to Egypt and the Mediter-
ranean Sea. This plague is known as the Justinian plague. The second plague,
known as The Black Death, occurred in the 14th century. It originated in Asia,
spread to the Crimea, and then Europe and Russia. The Black Death was one
of the deadliest pandemics in human history, causing an estimated 75 to 200
million deaths worldwide. It is believed to have originated from gerbils, where
it was carried by fleas that infested black rats. The disease then spread to
the Crimea, where it was first recorded in the early 1340s. From the Crimea,
the Black Death spread rapidly along trade routes and sea ports, eventually
reaching Europe and Russia [15].

The third plague began in the mid 19th century, originating in Yunnan,
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China, and spreading to Hong Kong and India before spreading worldwide [15].
Advances in technology, such as the expansion of trade routes, allowed goods
to be transported faster, which facilitated the establishment of Yersinia pestis
cycles worldwide. Countries that were previously free of plague saw outbreaks,
such as the United States, which had 61 cases between 1994 and 2003, and 13
cases and 2 deaths in 2006, as well as Madagascar and South America. During
the 1990s and 2000s, scientists observed the reappearance of plague in several
African countries. Between 2013 and 2018, the World Health Organization
reported 2886 cases and 504 deaths in countries such as Madagascar, Uganda,
and Tanzania. The recent increase in the number of cases is primarily due
to poverty, resulting in poor housing, sanitation, and lack of public health
services, which favor outbreaks of plague by increasing rodent populations. In
warm climates, rodent flea fertility increases, leading to a rapid increase in the
density of the rodent population and subsequent outbreaks of plague. Plague is

categorized as a re-emerging disease; it reappears in different regions [15] [17].

Plague Types

Plague has similar symptoms to the flu, high fever, chills, malaise, and
headache. The incubation period of plague is 2 to 3 days but may be as long as
6 days [15]. Further, symptoms of plague mostly depend on how the patient
was exposed to the disease. There are three main clinical forms of plague

depending on type of infection. These are,

1. Bubonic plague

This type of plague, known as bubonic plague, is primarily transmitted

through the bites of infected fleas vector carrying the bacterium Yersinia
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pestis. When an infected flea bites a person, the bacteria enter the body
at the site of the bite and travel through the lymphatic system to the
nearby lymph nodes, where they begin to replicate. As the bacteria mul-
tiply, the affected lymph nodes become inflamed and painful. Eventually,

the lymph nodes can develop into open sores filled with pus [18] [2].

The symptoms of bubonic plague typically appear within the first week
after infection, resulting in an incubation period of approximately 2 to 8
days [15]. Patients infected with bubonic plague may experience symp-
toms such as fever, headache, chills, weakness, and swollen and painful
lymph nodes in the affected area. If left untreated with appropriate an-
tibiotics, the bacteria can potentially spread to other parts of the body,

leading to more severe forms of the disease.

It is important to note that while bubonic plague is primarily transmit-
ted through flea bites, there are other forms of plague transmission as
well, such as through respiratory droplets or direct contact with infected
animals or their tissues. Each form of transmission may lead to different
clinical presentations and manifestations of the disease. Early diagno-
sis and prompt treatment with antibiotics are crucial in managing and
controlling bubonic plague. Timely intervention can help prevent the
progression of the infection and reduce the risk of complications or the

spread of the disease to other individuals.

. Pneumonic plague Bubonic plague, if left untreated, can progress to
a more severe form called pneumonic plague. Pneumonic plague occurs
when the Yersinia pestis bacteria spread from the initial site of infec-

tion, such as the lymph nodes, to the lungs. Unlike bubonic plague,
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which is primarily transmitted through flea bites, pneumonic plague has
the potential for person-to-person transmission through infectious res-
piratory droplets [2]. The incubation period for pneumonic plague is
typically shorter, ranging from 1 to 3 days [18]. This rapid onset of
symptoms distinguishes pneumonic plague from bubonic plague. Pneu-
monic plague has a higher mortality rate compared to bubonic plague,

making it a more severe and life-threatening form of the disease.

When pneumonic plague is not promptly diagnosed and treated, it can
lead to respiratory shock or failure, further exacerbating the severity of
the condition. However, if pneumonic plague is detected early and ap-
propriate antibiotic treatment is initiated within the first day of symp-
tom onset, the recovery rates can be high. It is important to note that
pneumonic plague is the only form of plague that can be transmitted
directly from person to person through respiratory droplets. This mode
of transmission poses a significant risk of rapid disease spread within

communities or populations [17].

Efforts to control pneumonic plague involve early detection of cases, iso-
lation and treatment of infected individuals, and the implementation of
preventive measures to limit person-to-person transmission. In outbreak
situations, public health interventions such as contact tracing, quaran-
tine measures, and the administration of prophylactic antibiotics to close

contacts may be necessary to prevent further spread of the disease [15].

. Septicemic plague

Septicemic plague is an extremely severe form of bacterial infection

caused by Yersinia pestis. It can be transmitted to humans through
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the bloodstream, primarily as a result of mishandling infected animals

or being bitten by fleas that carry the bacteria [2].

The symptoms of septicemic plague can vary, but commonly include
fever, chills, extreme weakness, abdominal pain, shock, and bleeding
into the skin and other organs. In severe cases, patients may experience
tissue necrosis, which leads to the death of tissues and can result in
blackening of affected areas, particularly in the extremities such as the

toes, fingers, and nose [1§].

Mechanisms of Spread

Plague is an endemic disease in various wildlife species. Rats and fleas
are considered major hosts in carrying the plague between reservoirs and peo-
ple. The transmission of plague primarily takes place in rural and semi-rural
areas characterized by poor sanitation and high rodent populations. The dis-

ease can be transmitted to humans through the following means:

1. Animal-Human Transmission

Humans can become infected with the plague through various means.
One mode of transmission is by consuming infected animals, such as
guinea pigs or camels, which serve as reservoirs for the disease [1§]. An-
other way transmission can occur is through the handling of tissues or
body fluids of infected animals. For example, if a hunter kills an infected
rabbit without proper protection, the fleas on the rabbit may transfer to

the hunter, resulting in plague transmission [19].

A range of animals can be affected by the plague, including rats, mice,

squirrels, rabbits, prairie dogs, chipmunks, and camels in rural areas. In
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1994, for instance, a sick camel in Saudi Arabia led to five human cases
of plague and two deaths. The disease was transmitted to humans who
had consumed the camel’s meat. Similarly, in 2002, an individual who

had hunted and skinned a sick wildcat contracted the plague disease |19].

Domestic animals like dogs and cats can also contract the plague by
being bitten by infected fleas or by consuming rodents infected with the
disease. These infected domestic animals can then transmit the disease
to humans [18] [19]. Therefore, people who handle domestic animals such
as cats and dogs are at a higher risk of exposure to the disease if the
animals are infected. Transmission occurs when the infected animal’s

blood comes into contact with broken skin on the human body [17].

. Human-Human Transmission

In addition to the previously mentioned modes of transmission, plague
can also spread through direct respiratory droplets. This occurs when an
infected person coughs or sneezes, releasing droplets into the air that can
be breathed in by susceptible individuals, leading to the transmission of

the plague [2].

When an infected person coughs or sneezes, respiratory droplets con-
taining the bacteria Yersinia pestis can be expelled into the surrounding
environment. These droplets may contain viable bacteria and can travel
through the air for a certain distance, depending on various factors such
as air currents and environmental conditions. If a susceptible person is
in close proximity to the infected individual or within the range of these
respiratory droplets, they can inhale the contaminated droplets into their

respiratory system, potentially leading to infection [15].
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Respiratory transmission of the plague is of particular concern in crowded
or close-contact settings, such as households, healthcare facilities, or
densely populated areas. It highlights the importance of implementing
measures to prevent the spread of respiratory droplets, such as main-
taining good respiratory hygiene, practicing cough etiquette (covering
the mouth and nose with a tissue or elbow when coughing or sneezing),
and wearing appropriate personal protective equipment when caring for

infected individuals.

. Flea-Human Transmission

Humans can contract the plague through flea bites, particularly in rural
areas where wildlife rodent species are present. In these regions, warm
climates, coupled with factors such as poor sanitation and high rodent
populations, create an environment conducive to flea infestations. People
in these areas are at an increased risk of being bitten by infected fleas,

leading to the transmission of the plague [18].

Fleas serve as important vectors in the transmission of the plague. They
can acquire the Yersinia pestis bacteria by feeding on infected animals,
typically rodents, which act as reservoir hosts. Once the fleas become
infected, they can transfer the bacteria to humans through their bites. In
rural settings, where close contact between humans and wildlife rodents
is more likely, the risk of flea bites and subsequent plague transmission

is higher [2].

The transmission of plague through flea bites is influenced by various
factors. For instance, individuals in rural areas may have their legs and

feet exposed due to traditional clothing practices or lack of protective
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measures. This increases the chances of flea bites directly on the skin,
providing an entry point for the bacteria. Additionally, warm climates
in developing countries create an environment where fleas thrive, further

increasing the risk of exposure to fleabites [19].

Prevention of flea bites is crucial in reducing the risk of plague transmis-
sion. Measures such as wearing protective clothing, using insect repel-
lents, and maintaining good personal hygiene can help minimize exposure
to fleas. Controlling rodent populations and implementing flea control
strategies in both domestic and wildlife settings are also important in

reducing the reservoir of infected fleas.
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2.2 Mathematical Models

Mathematical modeling has proven to be a valuable tool in studying the
transmission dynamics of plague during past epidemics. Earlier epidemiologi-
cal models of the Black Death primarily focused on the spread of the disease
through commensal rats during a single outbreak. However, in this study, we
present a comparison of two models that consider both the rat-flea route and
human ectoparasite transmission.

Our main objective is to gain a comprehensive understanding of the
transmission dynamics of plague during European epidemics by applying these
models to six outbreak scenarios from the Second Pandemic. By analyzing
these outbreaks, we aim to identify the most appropriate model for each sit-
uation. Through this analysis, we can enhance our understanding of the in-
tricate mechanisms of plague transmission and its impact on the dynamics of
epidemics. By examining the different routes of transmission and their cor-
responding models, we can gain valuable insights into the factors influencing

the spread of the disease and its variations across different outbreaks.

2.2.1 Pneumonic Model

The pneumonic model in our study aims to depict the transmission
dynamics of the plague disease from one human to another. This model is built
upon the classical SIR framework, utilizing similar assumptions and employing
a set of differential equations (2.1 and to describe the dynamics
of the disease. The initial conditions for the model are defined by equation
[I.2] providing the starting point for the simulation and analysis of plague

transmission.
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Figure 2.1: The pneumonic model is unique because it allows individuals to
transition between different categories without considering recovery phase. This
model specifically focuses on the human-to-human transmission of the bubonic
plague, a highly infectious disease caused by the bacterium Yersinia pestis.
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The pneumonic model has three compartments for humans: Sy, I, and
Dy,. The total human population is N, = S, + I;,. Recovered individuals are
not included in the model since untreated pneumonic plague has a very high
fatality rate. The transmission of pneumonic plague from human to human
occurs at a rate of 3,. The disease-induced mortality rate is 7, per day and is
equal to the inverse of the mean infectious period of pneumonic plague, which

is about 2.5 days [2].

2.2.2 Keeling-Gilligan RFT Model

Keeling and Gilligan developed a metapopulation model to study the
transmission dynamics of bubonic plague. This model incorporates 10 differ-

ential equations and focuses on the transmission of the disease from rodent

33



epizootics to humans [20]. It provides a comprehensive representation of the
disease’s transmission dynamics, including the spillover effect. The spillover
effect is the transmission of the plague from its natural reservoir hosts, such
as rodents, to humans. It occurs when the bacterium Yersinia pestis, which
is responsible for causing the plague, is transmitted from infected animals to
humans, resulting in human cases of the disease.

By incorporating the spillover effect into their metapopulation model,
Keeling and Gilligan were able to capture the complex dynamics of disease
transmission between different populations. This comprehensive approach al-
lows for a better understanding of how the plague spreads from rodent popu-
lations to human populations and provides insights into the factors that con-

tribute to the disease’s persistence and spread in different environments.

BiF

Figure 2.2: The model is based on the Keeling-Gilligan Rat-Flea-Transmission
model, which takes into account both rat-flea and rat-human transmission. It
mwvolves a continuous flow of individuals moving in and out of different com-
partments, thereby providing a more detailed and comprehensive representation
of the transmission dynamics.
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For each sub-category, namely rats and humans, there are four com-
partments, denoted by S, I, R,., and D, for rats and Sy, I, Ry, and D,
for humans. The rat population is assumed to be highly susceptible to the
disease, and we start with an entirely susceptible population of black rats
(Rattus rattus) [20]The infection is transmitted through infected fleas, which
are represented by the variable F'. The infection mechanism involves infected
fleas randomly searching for a new rat host within a given time period. If an
infected flea encounters a susceptible rat, there is a probability, denoted by
B, that the rat becomes infected. The parameter a measures the efficiency of
flea searching. Rats transition out of the infected class at a rate of v, !, and a
fraction of them, denoted by g¢,, survive and become resistant, while the rest
die and release their infected fleas back into the environment.

The dynamics of the rat fleas are modeled by two variables, namely the
average number of fleas per rat (H) and the number of free infectious fleas
(F) that are actively searching for a host. In the absence of bubonic plague,

the flea index H follows a logistic growth model, with a carrying capacity
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of Ky. The increase in the average flea index due to free fleas finding new
rat hosts is represented by the other term in the differential equation for H.
When an infected rat dies, free infected fleas are released into the environment,
releasing on average H fleas. Free fleas are assumed to die from starvation at
a rate of dy [20]. The model also focuses on the human population, which is
divided into four compartments (Sy, I, Ry, and D), with a total population
of N, = Sp,+1,+ Ry,. The birth and death rates are assumed to be independent

of population density [20].

2.2.3 Human-Ectoparasite Model (HET model)

The analysis of the model involves the use of seven differential equations
to describe the spread of bubonic plague through a human ectoparasite vector,
such as body lice or human fleas. Thus, transmission of bubonic plague via

these vectors is effectively modeled [2].
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Figure 2.3: The Human-Ectoparasite SIIRD Model can be represented using a
diagram that illustrates the flow of individuals in and out of each class. The
diagram shows an inward flow that results in a positive rate of change, while
an outward flow results in a negative rate of change. This flow diagram helps
to visualize how the model accounts for the movement of human population
between different categories, and how this movement contributes to the spread
of bubonic plague.
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The model incorporates five compartments for humans that vary over

time: susceptible (Sy,), infectious with mild bacteremia (I}, ), infectious with
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high bacteremia (Ip;g), recovered (Rj), and deceased (Dj). Additionally,
there are two compartments for vectors: susceptible (S;) and infectious (1;).
The total living human population is determined by the sum of individuals in
the susceptible, low infectious, high infectious, and recovered compartments,
denoted as Nj, = Sh + liow + Inigh + Ri. Plague transmission from vectors
to humans occurs at a rate represented by ;. Humans are mildly infectious
for an average duration of 8 days. Individuals with mild bacteremia have
a recovery rate of approximately 40% (gp) in the case of untreated bubonic
plague. Moribund humans transmit plague to vectors at a high rate (Bpign)
for an average of 2 days [2].

The susceptible vector population grows at an intrinsic growth rate of
r; and is limited by the carrying capacity (K;), which is determined by the
product of the parasite index and the number of human hosts (N). The in-
fection duration (;) is, on average, 4.5 days for human fleas and 3 days for
body lice |2]. The model assumes that infected human fleas and body lice do
not recover, and the transmission of plague by human fleas is hypothesized to
occur through early phase transmission, an alternative to the blocked trans-
mission observed in rat fleas which refers to a temporary interruption of the
flea’s ability to transmit the Yersinia pestis bacteria to a new host. Due to the
short duration of outbreaks, the model does not consider natural births and

deaths in the human population [2].
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Parameter Value Definition

Humans

Biow U(0.001,0.05) Transmission rate for bubonic plague from
mildly infectious humans to body lice

Bhigh U(0.001,1) Transmission rate for bubonic plague from
highly infectious humans to body lice

Bp U(0.001,1) Transmission rate for pneumonic plague

On U(0.001,0.2) (d) Transmission rate for bubonic plague from
rat fleas to humans

o, 8.0 (d) Average low infectious period for bubonic
plague

7t 2.0 (d) Average high infectious period for bubonic
plague

Yo ! 2.5 (d) Average infectious period for pneumonic
plague

it 10.0 (d) Average duration of infection for bubonic
plague

an 0.4 Probability of recovery from bubonic plague

Lice (P. humanus

humanus)

7 0.11 (per d) Natural lice growth rate

K; 15.0 (per person) Lice index at carrying capacity

B 0.05 Transmission rate for bubonic plague from
body lice to humans

vt 3.0 (d) Average infectious period for bubonic plague

Rats (R.rattus)

By U(0.001,1) Transmission rate for bubonic plague from
rat fleas to rats

it 5.2 (d) Average infectious period for bubonic plague

9r 0.1 Probability of recovery from bubonic plague

Fleas (X. cheopis)

rf 0.0084 (per d) Natural flea growth rate

Ky 6.0 Average number of fleas at carrying capacity
it 5.0 (d) Death rate of fleas

a % Searching efficiency
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Single numbers are fixed values and distributions (U=uniform) are priors [2].

Table 2.1: Utilizing parameters for the plague transmission from Dean et al.
work to show comparison [2].



2.2.4 Lynch-Oster RFT Model

Logistic models play a crucial role in capturing the dynamics of rat
and flea populations within the context of studying bubonic plague transmis-
sion. These models are employed to describe the changes and interactions that
occur within these populations over time, providing a mathematical represen-
tation of their dynamics. By incorporating logistic equations into the modeling
framework, we gain valuable insights into the overall transmission dynamics
of bubonic plague.

The logistic model, a well-known mathematical framework, is particu-
larly suitable for studying population dynamics when resources or environmen-
tal factors limit growth. It considers the carrying capacity of the environment,
which represents the maximum population size that can be sustained. As the
population approaches this limit, growth slows down, resulting in a more re-
alistic representation of population dynamics.

In the context of bubonic plague, the logistic model allows for the explo-
ration of how rat and flea populations interact and influence the transmission
of the disease. Rats act as primary hosts for the bacteria Yersinia pestis,
while fleas act as vectors that transmit the bacteria between rats and poten-
tially to humans. Understanding the dynamics of these populations is crucial
for comprehending the epidemiology and spread of bubonic plague.

By incorporating logistic equations into the models, we can study the
growth and decline of rat and flea populations in response to factors such
as resource availability, predation, and disease transmission. These equations
provide a quantitative framework for examining how the population sizes of

rats and fleas change over time, and how these changes can impact the overall
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transmission dynamics of bubonic plague.

dR

d—tT = (f(’;)RT(KR — Ry) — oRe (2.17)
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In the given set of equations, the variables Ry and R represent the
total population of rats and the population of rats that carry Y.pestis, respec-
tively. These equations capture the dynamics of the rat population in relation
to the transmission of plague. Similarly, the equations for the flea population
follow a similar structure, where the variables Fr and Fo represent the total
population of fleas and the number of contaminated fleas, respectively. These
equations describe the dynamics of the flea population in the context of plague
transmission.

Moving on to human dynamics, the SEIDR model (Susceptible, Ex-
posed, Infected, Recovered, Dead) is employed. This model accounts for dif-
ferent compartments in the human population and how individuals transition
between them based on the spread of the disease. Individuals move through
these compartments as they become exposed to the disease, progress to an

infectious state, die from the infection.
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Figure 2.4: In the Lynch-Oster model, the focus is on the population dynamics
of rats and fleas. The model accounts for the movement of individuals in and
out of each class using the SEIDR model.

as
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The SEIDR model is a compartmental model used to simulate the trans-
mission dynamics of bubonic plague. It comprises nine compartments, includ-
ing humans, rats, and fleas. The human compartments consist of susceptible
individuals (5), exposed individuals (£), infected individuals (I), recovered
individuals (R), and deaths (D). The rat compartments include total rat
population (Ryr), contaminated rat population (R¢), and flea compartments,

including flea population (Fr), contaminated flea population (F), and deaths
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of rats. The model parameters include infection rates for rats and fleas (5r
and [, respectively), carrying capacities of rats and fleas (Kg and Kr), trans-
mission of the disease from contaminated rats to fleas («), transmission rate
of fleas from contaminated rats to susceptible rats (), natural death rate of
the rat population (o), and flea death rate (p) [21].

The model equations describe the flow of individuals between compart-
ments over time. Equations (2.17) and (2.18) represent the dynamics of the
rat population, while equations (2.19) and (2.20) describe the dynamics of
the flea population. Equation (2.21) represents the flow of susceptible hu-
mans into the exposed compartment, with the term oS % representing the
transmission from infected fleas. Equation (2.22) describes the transition of
exposed humans to the infected compartment with the parameter v being the
transition rate. Equation (2.23) represents the flow of infected individuals into
the recovered compartment at a rate r, and a death rate of ¢ is assigned to
infected individuals, resulting in the transition of infected individuals to the
death compartment. Equation (2.24) represents the flow of recovered humans
out of the recovered compartment, while Equation (2.25) describes the deaths

of humans due to bubonic plague [21].
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Parameter Value Definition
Human
54 U(0.001,1) Intrinsic birth rate
o U(0.001,1) Chance of becoming infected from flea bite
1 U(0.001,1) Intrinsic death rate
vt U(0.25,10) (d) Incubation period of the disease
rt U(1, 100) (d) Rate of recovery from bubonic plague
ot U(1, 100) (d) Death rate from bubonic plague
Rat
Br U(0.1,1) Intrinsic birth rate for rats
Kgr 1.5 x N, Carrying capacity for rats
o U(0.001,1) Death rate from bubonic plague
! U(0.001,1) Infectivity of the plague from fleas to rats
v U(0.001,1) Recovery rate for rats
Flea
Br U(10,100) Intrinsic birth rate for fleas
K 6 X Kg Carrying capacity for fleas
P U(0.001,1) Death rate from bubonic plague
A U(0.001,1) Infectivity of the plague from rats to fleas

Table 2.2: Parameters for the Lynch-Oster model

2.3 Result Methods

By applying various plague models, including the Pneumonic model,
Lynch-Oster RFT model, Keeligan Gilligan RF'T model, and Human Ectopar-
asite model, to data from six different cities (Givry, Florence, Barcelona, Eyam,
Malta, and Moscow), we can gain valuable insights into how plague epidemics
evolve across different time periods and geographical locations. The dataset
used in this analysis contains information on daily disease-induced mortality
during the second outbreak in Europe, as outlined in Table [2.3] The dataset
was sourced from a Royal Society paper [22]. The models’ parameter values
and initial conditions employed for the analysis are provided in Table and
[2.2] respectively.

Fitting these models to the data allows us to estimate the model pa-

rameters that best fit the data for each city, evaluate the goodness of fit of



the model for each city, and compare the dynamics of plague epidemics across
cities. The goodness of fit metrics such as the Bayesian Information Criterion
and root mean squared error will be used assess the accuracy of the model in
predicting the observed data. Furthermore, comparing the model parameters
and goodness of fit metrics across cities can reveal differences in the dynamics
of plague epidemics, such as variations in transmission rates, and flea ecol-
ogy. This information can inform public health policies and interventions for
controlling and preventing plague outbreaks in different regions.

Bayesian inference is used to fit deterministic models to the observed
data, estimating parameters that otherwise cannot be directly observed. The
models are fitted to daily mortality with a time-step of 1 day. The probability
of observing the data given the model parameters was calculated using a se-
ries of Poisson random variables. We estimate the transmission rates for each
model and the initial size of the primary host population that was at risk or in-
fected. Uniformly distributed priors were assumed, and posterior distributions
were obtained using MCMC simulations with an adaptive Metropolis-Hastings
algorithm. Convergence was assessed using the Gelman-Rubin statistic, and
model comparison was performed using the Bayesian information criterion.
The preferred model was the one with the lowest BIC value. The MCMC
simulations were run for 180, 000 iterations with a burn-in of 80, 000 iterations
and a thinning of 10. This means that 180,000 proposed values for the parame-
ters of interest were generated and evaluated using the acceptance probability.
However, the first 80,000 iterations were discarded as a burn-in period. In this
particular case, a burn-in of 80,000 iterations is applied, meaning that the first
80,000 proposed parameter values are discarded. After the burn-in period, the

remaining iterations (in this case, 100,000 iterations) are used to approximate
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the posterior distribution and obtain estimates of the model parameters. The
burn-in period is used to allow the Markov chain to reach its stationary distri-
bution, where the distribution of the parameter values converges to the true
posterior distribution. The first few iterations of the chain may not be repre-
sentative of the true posterior distribution and discarding them helps to ensure
that the final results are not biased. After the burn-in period, the remaining
100,000 iterations were thinned by a factor of 10. Thinning is used to reduce
autocorrelation in the chain by skipping some of the proposed values. Autocor-
relation occurs when the proposed values are highly correlated with each other,
which can slow down convergence to the true posterior distribution. Thinning
helps to reduce autocorrelation by keeping only every 10th proposed value, for
example, and discarding the rest. We estimate the basic reproductive number
was estimated in each model for the primary host using the next generation
matrix method. Lastly, reporting error was also considered by incorporating
a constant probability of reporting into the likelihood function, with different
levels of underreporting (10%, 25%, and 50%) for each outbreak [2].

Overall, fitting plague models to data from multiple cities using statis-
tical software packages such as “pymc” in Python can provide valuable insights
into the dynamics of plague epidemics and inform public health policies and
interventions. However, it is important to carefully interpret the results of the
model fitting and consider the assumptions underlying the models to ensure

that the results are valid and reliable.
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Location Date (MM/YYYY) Population Total recorded mortality
Givry, France 07/1348 — 11/1348 1,500 636
Florence, Italy 05/1400 — 11,/1400 60, 000 10,215
Barcelona, Spain 04,/1490 — 09/1490 25,000 3,976
Eyam, England 06/1665 — 11,/1665 350 197
Moscow, Russia 07/1771 —12/1771 300,000 53,642
Island of Malta, Malta 04/1813 — 11/1813 97,000 4,487

Table 2.3: A summary of mortality data during the Second Pandemic in six
major European cities. The Second Pandemic was a worldwide outbreak of
bubonic plague that occurred during the mid-19th century and is estimated to
have caused millions of deaths [2].

2.3.1 Describing Mathematical Models fits

This study utilized Bayesian Markov Chain Monte Carlo (MCMC)
analysis to fit four transmission models to mortality data from the Second
Pandemic outbreaks. The posterior means and 95% credible intervals for the
estimated parameters in each model can be found in Figure [2.5] and Table [2.4]

Among the four models, the Human Ectoparasite model showed a su-
perior fit to the observed mortality patterns in cities such as Givry, Florence,
and Barcelona, as evidenced by lower Bayesian Information Criterion (BIC)
values. Similarly, the Lynch-Oster model provided a better fit to the mortality
data in cities like Moscow and Malta, where the presence of two peaks was
observed. This finding aligns with Dean et al.’s paper, which also highlighted
the irregularities in Moscow and Malta that were effectively captured by the
Lynch-Oster model. Notably, the Lynch-Oster model also demonstrated a
good fit for cities like Florence and Barcelona.

In the case of the Eyam outbreak, the Pneumonic model exhibited
a lower BIC compared to the other models, indicating a better fit to the
observed data. However, distinguishing between the models for smaller out-

breaks such as Eyam and Givry is challenging due to the overlapping credible
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intervals, making visual differentiation difficult. Interestingly, the Keeligan-
Gilligan model had the highest BIC value and demonstrated poor fit to the
observed data among the four models, suggesting that it could not adequately
capture the dynamics of bubonic plague transmission.

It is important to note that while the plague outbreak was analyzed
using daily data, some parameter values in the Pneumonic model and Keeligan-
Gilligan model were adjusted to replicate the results presented in Dean et al.’s
paper. This adjustment aimed to ensure consistency between the simulated
outcomes and the findings of the previous study, maintaining the integrity of

the analysis.
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Figure 2.5: The mortality data from the Second Pandemic outbreaks is being
fitted to four models of plague transmission: Lynch-Oster (red), Pneumonic
(blue), Keeling-Gilligan (green), and Human-Ectoparasite (orange). The ob-
served data is displayed as black dots, while the fitted models are represented
by mean values with 95% credible intervals. These models are being applied to
mortality data from six European cities, offering insights into the dynamics of
plague transmission in different time periods.



City Year | Model BIC ABIC RMSE
Givry 1348 | Pneumonic Model 1332.4867 | 54.7370 3.2642
Keeling-Gilligan 1292.0497 | 14.4008 3.0912
Lynch-Oster RFT 1326.3366 | 48.5877 2.9553
Human-Ectoparasite 1277.7489 | 0 3.0652
Florence 1400 | Pneumonic Model 3453.4082 | 674.7627 31.3240
Keeling-Gilligan 13410.7304 | 10632.0849 | 21.3570
Lynch-Oster RFT 4771.4387 | 1992.7932 | 11.7413
Human-Ectoparasite 2778.6455 | 0 15.5567
Barcelona | 1490 | Pneumonic Model 2480.6936 | 434.0678 8.1350
Keeling-Gilligan 3087.5268 | 1040.901 10.6453
Lynch-Oster RFT 2110.0267 | 63.4009 4.8484
Human-Ectoparasite | 2046.6258 | 0 4.8730
Eyam 1665 | Pneumonic Model 1189.9853 | 0 1.0084
Keeling-Gilligan 1324.1347 | 134.1521 1.1387
Lynch-Oster RFT 1219.6203 | 29.6350 1.0445
Human-Ectoparasite 1194.5295 | 4.5442 1.1252
Moscow 1771 | Pneumonic Model 7856.1234 | 3667.1689 | 116.2605
Keeling-Gilligan 18778.3554 | 14589.4009 | 172.0217
Lynch-Oster RFT 4188.9545 | 0 70.6026
Human-Ectoparasite | 5620.3103 | 1431.3558 | 89.6410
Malta 1813 | Pneumonic Model 3066.4463 | 627.361 10.6540
Keeling-Gilligan 7348.4848 | 4909.3995 | 20.4968
Lynch-Oster RFT 2439.0853 | 0 6.1668
Human-Ectoparasite | 2547.3111 | 108.2258 7.8805

Table 2.4: Comparison of transmission models and posterior estimates for
different plague models and outbreaks

2.3.2 Examining role of exposed group in Lynch-Oster

model

In this section, we explore the impact of including an additional ex-
posed compartment in the Lynch-Oster model. This compartment accounts
for the delay period between exposure and the onset of infectiousness. We
examine whether this addition improves the model fit. The SEIRD model,
which incorporates the exposed compartment and a compartment for individ-
uals who have died from the disease, is compared to a simplified SIRD model

without the exposed compartment. Our aim is to assess the influence of the
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exposed compartment on the duration of the epidemic and the spread of the
disease, while considering the possibility of overfitting.

Comparisons were made between the Lynch-Oster model and other
models, including the Human Ectoparasite model, the Pneumonic model, and
the Keeligan-Gilligan model, using the Bayesian Information Criterion (BIC).
The results revealed that the Lynch-Oster model exhibited relatively lower
BIC values, indicating a better fit and providing stronger support for the
transmission dynamics of the outbreaks. Figure [2.6] and Table present
the results, showing that the two models generally yield similar outcomes.
However, in Moscow, the SEIRD model had a slightly higher BIC value, and
for Malta, the SEIRD model demonstrated a slightly better fit. Overall, the
comparison did not indicate any evidence of overfitting due to the inclusion of

the exposed group in the Lynch-Oster model.
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Figure 2.6: Fitting the SIRD that examines the role of exposed group and
SEID in lynch-oster model of plague transmission to mortality during second
pandemic outbreaks. The observed human mortality data (black dots) and the
fit (mean and 95% credible interval) of the two models for plague transmission
[SIRD (blue) and SEIRD (red)] for siz plague outbreaks
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City Year | Model BIC ABIC RMSE
Givry 1348 | SIRD 1321.6421 | 0 2.9401
SEIRD | 1322.3741 | 0.832 2.9553
Florence 1400 | SIRD 5003.8469 | 0 11.6460
SEIRD | 5055.1415 | 51.2946 | 11.7413
Barcelona 1490 | SIRD 1992.9112 | 0 4.8474
SEIRD | 2004.5422 11.631 4.8484
Eyam 1665 | SIRD 1212.9198 | 0O 1.0438
SEIRD 1222.0041 9.0843 1.0445
Moscow 1771 | SIRD 5009.6170 | 201.9172 | 73.9805
SEIRD | 4807.6998 | 0 70.6026
Malta 1813 | SIRD 2438.8950 | 2.2840 6.1577
SEIRD | 2463.6110 |0 6.1668

Table 2.5: In order to examine the role of the exposed group in the Lynch-
Oster model for different plague outbreaks, we compared the fit of the SIRD
and SEIRD models using the BIC measure.

2.4 Discussion

The findings of our study support the notion that both rodent and
human transmission contributed to the spread of bubonic plague during the
Second Pandemic. The Lynch-Oster RFT model, which incorporates both
modes of transmission, demonstrated a superior fit to the observed mortality
patterns compared to other models considered. This suggests that rodents,
particularly rats, may have played a significant role in the transmission dy-
namics of the disease.

The inclusion of an exposed compartment in the Lynch-Oster model,
representing the delay period between exposure and infectiousness, did not re-
sult in substantial improvements in model fit or overfitting. This indicates
that the simpler version of the model, without the exposed compartment
(SIDR model), provided comparable results in certain cases, such as Eyam

and Givry. These findings suggest that the inclusion of an exposed compart-
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ment may not always be necessary to accurately capture the transmission
dynamics of bubonic plague during the Second Pandemic.

However, it is important to acknowledge the limitations and uncertain-
ties associated with modeling infectious diseases. Our study was based on
specific assumptions and available data, which may introduce inherent biases.
Different modeling approaches and parameterizations may yield alternative re-
sults, and therefore, the choice of model should consider not only the goodness
of fit but also biological plausibility and prior knowledge about the disease.

The contradiction with Dean et al.’s paper highlights the complexity of
modeling plague transmission and underscores the need for further research.
Divergent findings among studies may arise due to variations in data sources,
model assumptions, or methodological approaches. To gain a more comprehen-
sive understanding of the transmission dynamics during the Second Pandemic,
additional data are needed. This includes information on ecological factors
that affect rodent populations, the dynamics of ectoparasites, and detailed
historical records that provide insights into human behavior and movement
patterns.

In conclusion, our study suggests that both rodent and human trans-
mission likely played a role in the spread of bubonic plague during the Second
Pandemic. The Lynch-Oster model, which incorporates both modes of trans-
mission, demonstrated a better fit to the observed mortality data compared
to other models considered. Nevertheless, further research and data collec-
tion are necessary to validate and refine these findings. By addressing the
remaining uncertainties in modeling plague transmission, we can enhance our

understanding of this historical pandemic and improve our preparedness for
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future outbreaks of similar infectious diseases.
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Chapter 3

Analysis of the Hypothesis of
Endemic Stability: Polio and

Covid-19

This chapter explores the concept of endemic stability, which refers to
a situation where a population maintains a high prevalence of infection while
experiencing a low incidence of clinical disease. To enhance our understand-
ing of endemic stability, we utilize sophisticated models that consider various
factors, such as immunity, partial immunity, and the absence of immunity
dynamics.

Our models are specifically designed to investigate endemic stability
using both single and two age classes. In the two-age class model, we fo-
cus on distinguishing between children and adults within the population. By
separately analyzing these two distinct age groups, we can gain a more compre-
hensive understanding of how endemic stability manifests in different segments

of the population.
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To accurately represent real-world scenarios, our models incorporate
the dynamics of immunity, including birth and natural deaths, while track-
ing the progression of individuals who have been infected with the disease.
By studying the transition from infection to recovery, we enhance our com-
prehension of how the disease spreads within the population and evaluate
the long-term implications of achieving endemic stability. For example, these
models can be applied to analyze the dynamics of diseases like polio, where
understanding the progression from infection to recovery is crucial.

Furthermore, our models incorporate partial immunity and account for
the absence of immunity dynamics, which are essential for accurately capturing
the interplay between susceptible individuals, infected individuals, and those
who have recovered from previous infections but may still be susceptible to
subsequent infections. This aspect is particularly relevant for analyzing dis-
eases such as COVID-19, where immunity may decline over time, potentially
leading to reinfection.

By utilizing these advanced modeling techniques, our primary objective
is to gain insights into the necessary conditions and factors that contribute
to the establishment of endemic stability. Through hypothesis testing and
analysis, we aim to uncover the underlying mechanisms and prerequisites for
maintaining a population with a high prevalence of infection while minimizing
the incidence of clinical disease. This research will contribute to a better
understanding of disease dynamics and provide valuable insights for effectively

managing and controlling endemic diseases.
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3.1 Hypothesis of Endemic Stability

In this section, we examine the hypothesis introduced by the authors
of “Endemic stability, a veterinary idea applied to human public health” [23]
and apply it to the analysis of Polio and Covid-19. Although the concept
of endemic stability was initially developed in veterinary medicine to explain
tick-borne diseases in cattle, it has also been extended to human infectious
diseases such as malaria and rubella.

One of the key concerns discussed in the paper is the potential unin-
tended consequences of reducing the force of infection through interventions
like insecticide-treated nets for malaria control. The authors draw parallels
with veterinary medicine, where interventions targeting tick-borne diseases
have been associated with increased mortality rates. To address this concern,
the authors propose a mathematical model that can be generalized to all dis-
eases exhibiting endemic stability.

If this proposed model holds true, it could have significant implications
for public health interventions aimed at controlling infectious diseases. Un-
derstanding the dynamics of endemic stability and its potential consequences
could help inform decision-making and optimize the design and implementa-
tion of interventions to ensure the most effective and safe outcomes.

According to the authors, there are two necessary criteria for endemic
stability: (1) the disease is more likely or severe in older individuals, and (2)
initial infection reduces the likelihood of subsequent infections or the likelihood
that subsequent infections will lead to disease [23]. They use a simple model
to illustrate endemic stability, which involves an equation for the age-specific

disease incidence.
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such that,

a
Y

I, = Apae ™

where A is the force of infection, pa is the probability that infection at
aged a causes disease (where pa < 1), and p is a constant greater than zero

that determines the shape of the age-specific incidence curve.
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Figure 3.1: The relationship between age and disease incidence can be described
by the force of infection, denoted as X\, where a value of A\ = 2 indicates a high
likelthood of infection. The likelihood of an infection causing disease can be
varied by 0.01, 0.02, and 0.03 to observe its impact on the force of infection.

The authors further derive an index of the overall disease incidence as a
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function of A for a; = 0, ay = 2, and different values of p (power of infection).

The overall disease incidence is given by:
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Figure 3.2: Variation in overall disease incidence with force of infection.

The model presented in Figure [3.2| provides insightful observations re-
garding endemic stability and its association with disease incidence and the
force of infection. The model illustrates that as the force of infection increases,
the overall disease incidence initially rises. At an intermediate level of infec-

tion, it reaches a peak, and subsequently, it declines at higher levels of the force
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of infection. This pattern signifies that when the infection rate is high, there is
a substantial population of infected individuals. Consequently, when the power
of infection is low, only a small number of individuals become symptomatic,
resulting in a lower peak of disease incidence observed in the solid blue curve.
Conversely, with an increased power of infection, a relatively higher number
of individuals are expected to experience the disease, as demonstrated by the
dotted black curve.

The implications drawn from the model suggest that implementing par-
tial control measures when the force of infection is already high (positioned
to the right of the peak in disease incidence) may lead to an unexpected out-
come. Instead of reducing disease incidence, partial control measures could
potentially result in an increase in clinical disease within the population. This
finding emphasizes the importance of carefully considering the consequences
of partial control measures in the context of endemic stability.

These model results have significant implications for public health in-
terventions. When dealing with diseases that exhibit endemic stability, it is
crucial to adopt a comprehensive approach in designing and implementing
interventions. Simply reducing the force of infection without implementing
comprehensive measures may not lead to the desired reduction in clinical dis-
ease. Therefore, a holistic and strategic approach is necessary to effectively
manage, and control diseases characterized by endemic stability.

The primary objective of this study is to conduct a comprehensive in-
vestigation and evaluation of two hypotheses proposed in the paper ”Endemic
stability - a veterinary idea applied to human public health” [23]The first hy-

pothesis suggests that the power of infection (p) increases with age, indicating
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a higher likelihood of infection progressing to a symptomatic state as indi-
viduals advance in age. The second hypothesis proposes that the power of
reinfection (p") is lower than that of primary infections (p), indicating a de-
creased probability of clinical disease among individuals who have previously
been infected. The second hypothesis also suggests that A" < A\, which we do
not examine in this study.

To test the first hypothesis, we utilize both single and two age class
SIRD (Susceptible-Infectious-Recovered-Diseased) models with a specific focus
on immunity dynamics. These models will allow us to explore the consequences
of the power of infection differing across different age groups.

Furthermore, we will extend the SIRD model to include scenarios of
both absence of immunity and partial immunity to investigate the second
hypothesis. This expanded model will enable us to analyze the power of rein-
fection (7") in comparison to primary infections (7).

The findings and results obtained from these models will be carefully
analyzed and compared to assess the validity of the hypotheses. By examining
the conditions under which these hypotheses hold, our study aims to gain a
deeper understanding of the underlying mechanisms contributing to endemic

stability.
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3.2 Immunity: Polio

3.2.1 Overview of Polio Disease
Background of Polio

Polio is caused by the highly contagious Poliovirus, which belongs to
the Picornaviridae family and is a type of Enterovirus. The virus mainly
affects the motor neurons, which are responsible for transmitting messages
between the muscles and the brain [24]. Humans are the only natural hosts of
Poliovirus, although it can also infect monkeys if injected directly into their
central nervous system (CNS). When ingested orally, the virus multiplies in
the gut lining and then spreads to the bloodstream, eventually invading the
CNS and replicating in the motor neurons [25]. The incubation period for
poliovirus ranges from 2 to 35 days, and the virus is typically shed in stool 3
to 5 days after infection. It is believed that the virus may spread through the
afferent nerve pathways in the brain, leading to damage and destruction of the
anterior horn cells in the spinal cord and resulting in limb paralysis [26]. Polio
is a life-threatening disease that can cause permanent disability.

Polio is an ancient disease that has been around for over 1000 years [24].
The earliest identifiable reference to paralytic poliomyelitis dates back more
than 3500 years to an Egyptian stone engraving depicting a young man crip-
pled by the disease [24]. In the 1800s, polio was relatively uncommon and
spread at a low rate. During the 1890s, developed countries saw significant
advancements in their standard of living, which some researchers believe made
it easier for the virus to spread and lead to epidemics. Improved hygiene prac-

tices may have made more people susceptible to the virus, as fewer individuals
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were exposed to it at a young age. In the past, poor sanitation meant that
infants were highly exposed to polio, but their immune systems were aided by
maternal antibodies that quickly defended against the virus.

The emergence of polio can be traced back to the year 1916 when
the first cases were reported in New York City, United States. During that
outbreak, there were more than 27,000 reported cases of polio, and tragically,
it resulted in over 6,000 fatalities [26]. However, the development of effective
vaccines in the mid-20"" century helped reduce the incidence of polio, and
the global polio eradication initiative launched in 1988 further reduced wild
poliovirus cases by over 99%. As a result, the majority of countries in the
world declared themselves polio-free, but Pakistan and Afghanistan remained
endemic for wild poliovirus [27]. Despite these efforts, there have been recent
outbreaks of wild poliovirus in countries such as Malawi, Afghanistan, and
Pakistan.

Polio is a highly contagious disease that primarily affects children under
the age of 5 years old but can also infect unvaccinated or partially vaccinated
adults. There are three types of poliovirus, namely types I, II, and III, and
individuals who are not fully vaccinated are at a higher risk of contracting
any of these three types. In September 2022, an unvaccinated adult in New
York was found to have contracted poliovirus, and a paralyzed 3-year-old girl
was found with wild polio in Malawi. Tests confirmed that the virus was sim-
ilar to the type circulating in Singh province in Pakistan, indicating that the
circulation of poliovirus from endemic countries has not stopped [28]. These
recent cases underscore the importance of continued efforts to eradicate polio

and ensure vaccination coverage to prevent further outbreaks.
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Polio Transmission

Poliovirus is a contagious disease that spreads through contact with
infected stool, water droplets from coughs or sneezes of an infected person,
and contaminated water or food [24]. The virus multiplies in the intestine
and can invade the nervous system, causing paralysis, especially in areas with
poor sanitation [26]. The virus tends to propagate more rapidly among the
nonimmune population during the summer seasons in temperate regions [26].

Most cases of polio present as mild illnesses symptoms, with only about
1% — 2% of infected individuals becoming paralyzed [24]. Paralytic polio
occurs when the virus enters the bloodstream and attacks nerve cells, and in
some cases, infected individuals may develop throat and chest paralysis [24].
Infected persons can spread the virus to others immediately before and up to

two weeks after symptoms appear.

Symptoms and Recovery of Polio Disease

According to the Centers for Disease Control and Prevention (CDC),
around 72 out of 100 people who contract poliovirus do not display any visible
symptoms, while 1 out of 4 individuals may experience flu-like symptoms,
such as fever, fatigue, headache, vomiting, stiffness in the neck, and pain in
the limbs, which typically last between 2 to 5 days [29]. However, individuals
with weakened immune systems may develop more severe symptoms that affect
the brain and spinal cord, such as paresthesia, meningitis, and paralysis [30].

The virus enters the body through the mouth, multiplies in the intes-
tine, and can invade the nervous system [24]. In up to 90% of cases, polio

infection causes no symptoms or mild symptoms that go unnoticed [29]. Some
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patients may recover completely from initial symptoms, which usually last be-
tween 2 to 10 days. However, in a small proportion of cases, the virus can
cause paralysis, often of the legs, which can be permanent and may occur as
quickly as within a few hours of infection. Approximately 5 — 10% of those
who experience paralysis due to polio may die from immobilization of their
breathing muscles [30]. Even children who fully recover from polio infection
may experience new muscle pain, weakness, or paralysis as adults, usually

between the ages of 15 to 40 years [29).

Vaccination of Polio Disease

Poliovirus exposure or infection can provide immunity, but it is not a
guaranteed protection against all three types of poliovirus. It is possible for a
person to be exposed to or infected with one type of the virus and still contract
another type.

There are two types of polio vaccines: the inactivated poliovirus vaccine
(IPV) and the oral poliovirus vaccine (OPV). IPV was developed by Jonas Salk
in the 1950s and is administered by injection in the leg or arm, depending on
the age of the patient. OPV was developed by Albert Sabin and is given
orally. The introduction of IPV in the 1950s led to a significant decrease in
polio cases, and by 1994, most developed countries had eliminated polio. By
2000, Western countries had declared themselves polio-free, demonstrating the
significant role of the vaccine in eradicating poliovirus [31].

Both types of vaccines have been shown to be highly effective against
all three types of poliovirus. However, they work differently. TPV provides

serum immunity to all types of poliovirus and protects against paralysis. OPV
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also provides serum immunity to all types of poliovirus and protects against
paralysis, but it also prevents the virus from spreading to the nervous system.
The oral polio vaccine (OPV) elicits an immune response within the intestinal
mucous membrane, which serves as the main location for the replication of the
poliovirus. Almost all children (99 out of 100) who receive all the recommended
doses of IPV will be protected from polio. To be fully vaccinated, a person

needs to receive all the recommended doses of either IPV or OPV [30].
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3.2.2 Mathematical Models

This chapter focuses on studying the dynamics of disease spread in re-
lation to polio, with a particular emphasis on considering population factors
such as birth and death processes. We examine both single and two age SIRD
(Susceptible-Infectious-Recovered-Diseased) models to explore the presence of
endemic stability and gain a deeper understanding of the conditions that give
rise to this phenomenon. Additionally, we aim to investigate the hypothesis
that the power of infection (7) increases as age class advances, suggesting a
higher probability of infection progressing to a symptomatic state with in-
creasing age.

Based on data provided by the CDC (Centers for Disease Control and
Prevention), we observe that approximately 70% of children infected with
polio remain asymptomatic, while only around 5% develop paralysis. This
information indicates that children have a lower risk of experiencing paralysis
when infected with polio, suggesting a lower power of infection compared to
adults. An important observation is that individuals who contract polio at a
young age tend to recover quickly and acquire immunity. On the other hand,
adults who have not previously been infected are more susceptible to paralysis
if they contract the virus.

To account for the heterogeneity within the population, we incorporate
an immunity model. This model takes into consideration that not all individ-
uals have the same likelihood of becoming infected with polio, particularly at
a young age. Some individuals may never experience an infection, while others
may contract the virus later in life. By considering these variations, we obtain

a more realistic understanding of the disease dynamics and the potential for
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endemic stability.

Moving on to the construction of the single age class model, our aim
is to delve further into these immunity dynamics and analyze the necessary
conditions for the presence of endemic stability. By examining the interactions
between susceptible, infectious, recovered, and diseased individuals, we can
assess how the disease spreads and persists within the population. Through
this analysis, we strive to uncover the contributing factors and parameters

that influence the establishment of endemic stability in the context of polio.

A. Single Age Class Model with Immunity

In our analysis, we are utilizing a single age class model that considers
the entire population and incorporates the occurrence of births and deaths.
This model follows the SIRD (Susceptible-Infectious-Recovered-Diseased) flow,
which represents the possible transitions individuals can undergo during the
course of the disease. The model consists of four compartments: Susceptible
(S), Infectious (I), Recovered (R), and Diseased (D). These compartments
represent the different states an individual can be in with respect to the disease.

The flow of the model, as depicted in Figure [3.3] illustrates the tran-
sitions between the compartments. Initially, individuals in the population are
classified as susceptible (S), meaning they are at risk of contracting the dis-
ease. When a susceptible individual comes into contact with an infectious
individual, they become infected and move to the infectious compartment (I),
where they have the potential to transmit the disease to others.

Over time, individuals in the infectious compartment may recover from

the disease and move to the recovered compartment (R), indicating that they
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have developed immunity and are no longer capable of transmitting or getting
the disease. However, some individuals in the infectious compartment may
experience more severe outcomes and move to the diseased compartment (D),
representing those who have suffered from the disease and are not able to
recover.

To account for the occurrence of births and deaths within the popu-
lation, we incorporate birth and death rates into the model. The birth rate
represents the rate at which new individuals enter the population, while the
death rate represents the rate at which individuals in the population pass away
due to natural causes.

The mathematical equations shown in (3.1, 3.2, 3.3, and 3.4) govern the
transitions between the compartments and capture the dynamics of the disease,
births, and deaths within the population. By analyzing these equations and
simulating the model, we can study the behavior of the system, explore the
impact of births and deaths on the spread of the disease, and investigate the

conditions necessary for achieving endemic stability.
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Figure 3.3: This visual representation showcases the movement of individuals
between compartments (Susceptible, Infected, Recovered, and Diseased) in the
single age class model with immunity. The arrows represent the flow of in-
dividuals, while the associated rates illustrate the probabilities of transitioning
between compartments. The model takes into account the effects of births and
natural deaths, allowing for a thorough analysis of disease dynamics and its
interplay with population changes. By examining these transitions, the model
offers valuable insights into the progression of diseases and the impact of im-
munity on population health.

% = uN — (u+ A%)S, (3.1)

% = AS% —p(y+m) I —pl, (3.2)
% =pyl — uR (3.3)

% = prl — pD (3.4)

The system of equations comprises four differential equations that char-
acterize the behavior of the single age class SIRD model incorporating birth

and death processes. The total population is represented by the sum of the
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compartments: N =S+1+ R+ D

The rate of change of susceptible individuals (S) over time (t) is de-
termined by a balance between the birth rate and total population (uN), the
impact of disease transmission over the entire population (A%), and natural
death (pS) within the susceptible population.

The rate of change of infected individuals (I) with respect to time (t)
is influenced by the infectious rate (ML), the likelihood of infection progress
to asymptomatic state (pyI), likelihood of infection progress to symptomatic
state (pml), and deaths (ul). This equation captures the flow of individuals
transitioning into the infectious state through disease transmission, their re-
covery (asymptomatic), progression to disease (symptomatic), and the impact
of natural death.

The rate of change of recovered individuals (R) with respect to time
(t) is determined by the likelihood of infection progress to asymptomatic state
(pyI) and deaths (uR). It represents the flow of individuals recovering from
the disease and those who have passed away due to natural death.

Lastly, the rate of change of diseased individuals (D) over time (t) is
influenced by the likelihood of infection progress to symptomatic state (pml)
and deaths (uD). This equation accounts for the flow of individuals who have
experienced the disease and subsequently passed away from natural death.

These equations describe the interplay and transitions between the dif-
ferent compartments (susceptible, infected, recovered, and diseased) while in-
corporating the effects of births, deaths, disease transmission, recovery (asymp-
tomatic), and disease (symptomatic) within the population. By solving these

equations, we can analyze the dynamics of the disease, examine the impact
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of various parameters on the system, and explore the conditions required for

endemic stability.

Examining Force of infection and Disease incidence of Single Age

Class model with Immunity

To further analyze the dynamics of the model, we can calculate im-
portant epidemiological measures such as the force of infection and disease
incidence. The force of infection represents the rate at which susceptible indi-

viduals become infected, and it is given by:

Fe /0 D

We normalize the force of infection by dividing it by the product of
the total population (N) and the length of the time period (7') gives us the
average force of infection as shown in Equation

5y Dt

o (3.5)

On the other hand, the disease incidence measures the number of new
cases that become symptomatic within a given time period. It is calculated
by integrating the product of the disease-induced mortality rate (pm) and the
number of infected individuals (I) over the time period, and then normalizing

it by dividing by the product of the total population (N) and the length of
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the time period (7T") as shown in equation

b Jo or Dt

— (3.6)

Identifying Steady States

To analyze the steady states of the SIRD with immunity model, we
focus on two equilibrium points: the disease-free equilibrium and the disease-
endemic equilibrium.

At the disease-free equilibrium, where the infected population (1) is
zero, such that susceptible population (S) = (p(y+m)+ ). This equilibrium
represents the eradication of the disease, where no individuals are infected.

The disease-endemic equilibrium occurs when the infected population
is non-zero. To find this equilibrium, we solve for the value of I by setting

%—*tg = (0. This leads to the equation:

I
N—uS —\A\—S§ =
W wS NS 0

Simplifying and substituting the value of S, we have:

N N
PN = pp~=(y+m) = P =L (p(y +7) + 1) = 0

Solving for I, we obtain the steady state at the disease-endemic equi-

librium:

pN — B (y +7) — pi*%

[ =
p(y+m) +p

Therefore, we assume that I* = I, then force of infection is redefine as:
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N — B (y+7) — pi*§

Faal =2\
p(y+m) + p

Additionally, the disease incidence rate is redefined as:

pN = B(y +7) — 1%
p(y+m) +p

D=~ prl* = pn

B. Age Structure Model with Immunity

In this chapter, we extend our analysis to a two-age class model that
takes into account the population division between children (0 - 2 years) and
adults (2+ years). This model incorporates the occurrence of births and
deaths and follows the SIRD flow, allowing for transitions between the differ-
ent age classes. The compartments in this model are represented by variables
S, 1., R, D, for children and S,, I,,, R,, D, for adults.

Figure 3.4 illustrates the structure of the model and its corresponding
parameters. Similar to the single age class model, adults give birth to newborns
who are initially classified as susceptible, placing them at risk of contracting
the disease. After two years, children transition to the adult age class and
become more susceptible to developing symptoms when infected with the virus.

In this two-age class model, we assume that the birth and death rates
are equal, indicating that the population is experiencing a balance between
births and deaths. The mathematical equations shown in (3.7, 3.8, 3.9, 3.10,
3.11, 3.12, 3.13, and 3.14) govern the transitions between the compartments
and capture the dynamics of the disease, births, and deaths within the popu-
lation.

By utilizing this two-age class model and considering the interplay be-

75



tween children and adults, we can gain a deeper understanding of how the
disease spreads and impacts different age groups. The equations provide a
framework for studying the disease dynamics, birth and death rates, and the

transitions between compartments.

Figure 3.4: This illustrative flowchart displays the transitions between com-
partments (Susceptible, Infected, Recovered, and Diseased) in the age struc-
ture model with immunity. The arrows symbolize the movement of individuals,
and the associated rates represent the probabilities of transitioning between
compartments. Additionally, the model incorporates the effects of births and
deaths on the population, contributing to a more accurate representation of
disease dynamaics and its interplay with population dynamics. By eramining
these transitions, the model enables an in-depth analysis of disease spread and
the impact of age-specific factors on population health.
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dcic = uN — )\%Sc — 1S, — 48, (3.7)

djta _ —)\%Sa — 48, + 65, (3.9)

L A8~ plre 4 o). — pl. 1, (3.9)
(2]1;“ = /\NaSa — p(Ya + ) I; — ply + 51, (3.10)
dcic =pYel. — pR. — 0R, (3.11)

% = Yolo — PRy + 0R, (3.12)

d(gc = pnd. — uD. — 6D, (3.13)

df;" = prgly — Dy + 6D, (3.14)

The given system of equations represents a disease spread model in a
population consisting of two age classes: children and adults. It incorporates
four compartments for each age class: susceptible population (S.,), infected
population (I.,), recovered population (R, ,), and diseased population (D).
The total population is divided into children (N.) and adults (N,), with the
overall population denoted as (N = N, + N,).

This model extends the previous single age class model by introducing
the transition rate between age classes. Specifically, individuals transition
from the child age class to the adult age class when they reach the age of two,
governed by the transition rate §. Consequently, the population of children
decreases while the population of adults increases.

By incorporating separate age classes and their transitions, this model

provides a more comprehensive understanding of disease dynamics in the pop-
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ulation. It allows us to analyze the influence of age-specific factors on disease
spread, recovery, and infection rates. However, this model assumes that new
births depend on the entire population, including children being able to give
birth. This assumption deviates from reality. To address this limitation, we
refine the model to better mimic the real world.

In our refined model, we consider that new births depend only on the
adult population. Additionally, we assume that children do not experience
deaths at a young age, meaning the death rate for children is set to zero.
Furthermore, we assume that the birth rate is equal to the adult death rate
(= 6%—:), which is determined by the transition rate between age classes
and the ratio of the children population (N.) to the adult population (N,).
These refinements make the model more realistic and aligned with real-world

dynamics.

dcic — LN, — )\%SC — 05,
dcia - —A%Sa — 1150 + 85,
C;[tc - A%Sc = p(ve + me) Lo = 0L
dd% = A%Sa = P(Ya + )L — plo + 01
dc.;ic — pv.I, — OR,
% = PYala — pRa + 0R.
dcjl-zc — prod. — 0D,
D,

= a[a_ Da 6Dc
g el T Bt
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Examining Force of infection and Disease incidence of Age structure

model with Immunity

The calculation of the force of infection and disease incidence in the two-
age class model takes into account the dynamics of both children and adults
within the population. These metrics provide insights into the transmission
intensity and disease burden in each age class.

The force of infection (F') represents the rate at which susceptible in-
dividuals become infected. It is calculated by summing the contributions of
infected individuals from both age classes over a specific time interval. The
force of infection can be determined by integrating the product of the trans-

mission rate (\.,) and the number of infected individuals (1.,) over time:

T
F = / (Aede + Aaly)dt
0

To further assess the transmission intensity and the risk of infection
within the population in a standardized manner, we can normalize the force
of infection to obtain the average force of infection. This measure provides
a relative assessment of the overall transmission intensity, accounting for the
population size.

The average force of infection (F) is obtained by dividing the integral
of the force of infection (F') over a specific time interval by the product of the
population size (N) and the duration of the observation period (T):

=T OGL+ ALt

F= 1
NT (3.15)

Similarly, the disease incidence (D) quantifies the rate of new disease
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(symptomatic) cases in the population. It accounts for the contributions
of symptomatic infections in both age classes over a specific time interval.
The disease incidence is calculated by integrating the product of the disease-
induced mortality rate (pm.,) and the number of infected individuals (I.,)

over time:

P fOT p(med. + mol,)dt
B NT

(3.16)

Here, N represents the total population size, and T" denotes the total

duration of the observation period.

Variable Description unit
A Infection rate of susceptible population m
o Birth and Death rate d;ys
™ Likelihood of infection progress to symptomatic state (Power of infection) d;ys
y=(1-m) Likelihood of infection progress to asymptomatic state dalys
P Timescale that Infections are contagious dalys
) Transition rate between age groups d;ys
t Time days
S Number of susceptible people people
1 Number of infected people people
R Number of recovered (asymptomatic) people people
D Number of disease (symptomatic) people people
N Total number of people people

Table 3.1: This table presents the units associated with the variables and pa-
rameters utilized in age structure model with immunity SIRD (Susceptible-
Infected-Recovered-Disease) models. The wvariables, representing population
compartments such as susceptible (S), infected (I), recovered (R), and dis-
ease (D), are measured in absolute quantities or proportions. The parameters,
including infection rates, power of infection, and birth and death rates, possess
specific units that may vary depending on the particular disease and context
being modeled.
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3.2.3 Results

In our study, we extensively investigate two models: the single age
class model and the two-age class model. These models play a crucial role
in providing us with valuable insights into the dynamics of disease transmis-
sion and progression. While they differ in their structural design, they share
common parameter values and initial conditions, enabling us to make mean-
ingful comparisons and obtain a comprehensive understanding of the behavior
of infectious diseases.

One of the key aspects we focus on is the hypothesis that children
have a lower likelihood of progressing to symptomatic infection compared to
adults. To thoroughly examine this hypothesis, we analyze both the single
age class model and the two-age class model. By incorporating age-specific
parameters and considerations, we can explore how disease dynamics differ
between children and adults.

In the single age class model, we investigate the progression of infection
within a homogeneous population, where all individuals are treated as a single
group without distinction based on age. This model allows us to study the
overall dynamics of the disease and its impact on the population as a whole.
By comparing the likelihood of symptomatic infection between different age
groups within this model, we can gain initial insights into the potential differ-
ences in disease severity.

However, to gain a more comprehensive understanding of the role of age
in disease dynamics, we also employ the two-age class model. This model di-
vides the population into two distinct age groups: children and adults. By con-

sidering the interactions and transmission dynamics between these age groups,
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we can specifically examine how the disease behaves differently among children
and adults. This model allows us to assess the varying susceptibility, infection
rates, and recovery patterns based on age, providing more nuanced insights
into the hypothesis.

Through the exploration of both models, we aim to uncover valuable
information regarding the hypothesis that children have a lower likelihood of
progressing to symptomatic infection compared to adults and determine neces-
sary conditions for endemic stability. By incorporating age-specific parameters
and observing the disease dynamics in different age groups, we can evaluate
the validity of this hypothesis and gain a deeper understanding of the role of

age in shaping the progression and severity of infectious diseases like Polio.

Single age class model results analysis

In our investigation of the single age class model with immunity, we
aim to understand the impact of different infection rates: 0.1 and 2.0. Fol-
lowing infection, individuals have two possible outcomes: they either become
asymptomatic or progress to a symptomatic state. The likelihood of infection
progressing to the asymptomatic state is 0.95, while the likelihood of progress-
ing to the symptomatic state is 0.05. To ensure population balance, we set the
birth and mortality rates to approximately 0.005, maintaining a stable equi-
librium between population growth and loss. The simulation duration spans
10 years, providing us with an opportunity to examine the dynamics of immu-
nity over time. During this period, we assume a contagious timescale of 0.15,
representing the duration in which individuals are infectious and capable of
transmitting the disease to others. Further, we assume that the model does

not have any vaccinated individuals in the population.

82



To apply these models to a real-world scenario, we specifically focus on
the city of San Francisco, utilizing population data from 2021. Based on avail-
able information, the population of San Francisco in 2021 was approximately
815,201 individuals. By considering this population size, we assume an initial
infected population of around 100 individuals, with no individuals classified as
recovered or diseased at the beginning of the simulation.

By incorporating these parameters and adapting the models to the
context of San Francisco, we can simulate and analyze the spread of the disease,
track the progression of immunity, and gain valuable insights into the potential
for endemic stability within the city. This approach allows us to assess the

effects of different transmission rates on disease dynamics.
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Single Age Class with Immunity
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Figure 3.5: The single age class model incorporating immunity provides valu-
able insights into the dynamics of infectious diseases, particularly when applied
to the analysis of polio. To contextualize our findings, we utilize population
data from San Francisco, which has a total population of 815,201 individuals.
By simulating the model over a 10-year period, we observe the emergence of a
steady state, indicating a state of equilibrium in the disease dynamics. In our
analysis of polio, we examine two scenarios: one with a low infection rate of
0.1 and another with a high infection rate of 2.0. When the infection rate is
low, the disease incidence remains at a minimal level. This suggests that the
impact on public health is relatively low, with only a small proportion of the
population being affected by the disease. However, in the case of a high infec-
tion rate, the disease spreads rapidly throughout the population. This leads to
a substantial increase in the number of infections and a larger population of
individuals experiencing symptoms of the disease. Despite the initial surge in
cases, we observe the emergence of a steady state, indicating the presence of
endemic stability.

Our observations indicate that when the infection rate is very low, the
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overall impact on the population is minimal. Infected individuals tend to re-
cover quickly, resulting in a low number of infections and no symptomatic
cases. However, as the infection rate increases, we observe a higher number
of infections occurring within a shorter timeframe, followed by a higher like-
lihood of infection progress to asymptomatic state. Nevertheless, the number
of individuals experiencing symptomatic disease remains relatively small, with
approximately 36,388 individuals affected.

Considering equal birth and death rates in our model, we find that the
susceptible population initially decreases rapidly as more individuals become
infected, recovered (asymptomatic), and disease (symptomatic). However,
over time, the susceptible population gradually increases due to new births,
while the number of infected individuals decreases and reaches a steady state
at approximately 24,260 individuals. This trend continues until a balance is
achieved. Although the susceptible population does not reach zero, it becomes
significantly smaller over time, resulting in a final susceptible population size
of approximately 63,180 individuals.

Our analysis reveals that higher infection rates lead to a larger number
of infections and recoveries (asymptomatic) individuals, while the susceptible
population gradually increases but remains relatively small due to a balance
between births and deaths. Moreover, the model reaches a steady state where
there is no significant increase or decrease in population size for each age group.
The presence of a high infection rate with a low number of symptomatic cases
indicates that polio has reached endemic stability in the population.

To gain a more comprehensive understanding of disease dynamics, we

also explore a two-age class model. This model introduces the concept of
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age groups, specifically children and adults, allowing us to analyze how age
influences disease transmission and progression. By incorporating age-specific
parameters and considering the interactions between different age groups, we
can gain valuable insights into the dynamics of disease spread and the impact
of age-related factors on endemic stability.

By studying the two-age class model, we can examine how age-specific
differences in susceptibility, infection rates, and likelihood of infection progress
to asymptomatic and symptomatic state shape the spread of the disease. This
approach enables us to assess the varying effects of age on disease dynamics
and identify age-related factors that contribute to the establishment of en-
demic stability. Understanding the impact of age on disease transmission and
progression is crucial for developing effective strategies to control and manage

infectious diseases in different populations.

Two age class

In our study of the two-age class model with immunity, we investigate
different transmission rates similar to the single age class model. However,
we introduce a distinction between children and adults by assigning different
power of infection values for each group. Specifically, we assume that the
power of infection for children (7.) is lower than that for adults (m,), with
7. = 0.005 and 7, = 0.05. This differentiation allows us to examine how the
level of infection contributes to the stability of the disease within each age
group.

Furthermore, we account for the likelihood of infection progressing

to the asymptomatic state, considering the differences between children and
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adults. For children, we set the likelihood to be approximately 0.995, indicat-
ing a high probability of progressing to the asymptomatic state. In contrast,
for adults, we consider a value of 0.95, reflecting a slightly lower likelihood of
progressing to the asymptomatic state.

To simulate the age transition from children to adults, we introduce a
transition rate of approximately 0.001 for individuals transitioning from the
children age group to the adults age group. However, in this model, there is
no age transition from adults to the elderly.

For our simulation in the context of San Francisco, we utilize population
data from 2021. According to available information, the population of children
aged 0 to 2 years old in San Francisco was approximately 23,996, while the
adult population was around 791,205. These population figures serve as the
basis for initializing the model, while we maintain similar initial conditions for
the other compartments as in the single age class model.

By incorporating these parameters and population data, our goal is
to gain insights into the dynamics of the disease and assess its potential for
endemic stability in a two-age class population. This model allows us to ex-
plore the impact of different transmission rates, age-specific power of infection,
and the likelihood of progressing to the asymptomatic state, providing a more

nuanced understanding of the disease dynamics within distinct age groups.
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Figure 3.6: The figure illustrates the age structure model with immunity, in-
corporating the consideration of birth and death rates based on the modified
simulation. In this modified simulation, it is assumed that only adults are ca-
pable of giving birth, represented by p. = 0, while the death rate for adults,
1, is determined by the equation p = 0 * ]]\V[a, where & represents the overall
death rate, and N. and N, denote the population sizes of children and adults,
respectively. The simulation results align with the previous observations when
the infection rate is low, indicating the absence of an outbreak. Consequently,
the susceptible population remains unchanged, as the impact of the disease is
minimal. However, as the infection rate increases, an outbreak occurs, lead-
ing to a significant rise in infections within the population. Notably, as the
outbreak progresses, the infected population eventually reaches zero, indicating
that individuals have acquired immunity and the spread of polio has been effec-
tively halted. This suggests that the population has developed resistance to the
disease, leading to its eradication within the population. These findings empha-
size the importance of considering age-specific factors and the incorporation of
birth and death rates in disease modeling. By incorporating these elements, we
can observe the impact of different demographic factors on disease transmis-
sion and the eventual attainment of immunity and disease eradication.
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The simulation results from the modified model, which incorporates ad-
justments to new births occurring only among adults, reveal a significant trans-
formation in disease dynamics. This modification leads to notable changes in
the trajectory of the disease and its eventual outcome.

In the modified model, when examining the impact of low infection
rates, we observe a similar pattern as in the single age class model. With
minimal infection rates, the disease has a negligible impact on the population,
resulting in a relatively stable susceptible population size. The number of new
infections remains low, thereby maintaining a lower overall disease burden.

However, as we increase the infection rate, a distinct shift in dynamics
becomes apparent. The higher infection rate leads to a more pronounced
outbreak scenario characterized by a rapid increase in the number of infections
within the population. The outbreak progresses rapidly, affecting a larger
portion of the population before eventually reaching a peak and subsiding.

What becomes particularly intriguing in the modified model is the sub-
sequent trend observed as the outbreak progresses. Unlike in the previous
model, here we witness a decline in the number of infected individuals over
time, eventually reaching zero. This signifies a significant shift towards dis-
ease eradication within the population. The decline in the infected population
suggests that a substantial portion of the population has acquired immunity
through previous exposure to the disease. However, it’s important to note that
in this model, we do not observe a steady state.

This outcome reflects the effectiveness of the population’s immune re-
sponse in halting the spread of polio. With a larger proportion of individuals

being immune, the transmission of the disease is interrupted, resulting in the
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eradication of polio within the population. The eradication of polio in this
refined model demonstrates the potential for successful disease control and
prevention strategies, such as widespread vaccination campaigns and immu-
nization efforts. By achieving high levels of immunity within the population,
we can effectively halt the transmission of infectious diseases and work towards
their eradication.

It’s crucial to emphasize that the modified model shows a more fa-
vorable outcome in terms of disease control and eradication compared to the
previous model, which exhibited endemic stability. Endemic stability indicates
the potential for recurring outbreaks over time. These contrasting results high-
light the significance of accurately representing demographic factors and birth
and death rates when studying disease dynamics, as they can greatly influence
the trajectory and eventual outcome of infectious diseases within a population.
However, the primary goal is to achieve endemic stability, which requires iden-
tifying the necessary conditions. One approach to achieving endemic stability
is by increasing the infection rate. It was observed that when the infection
rate reaches or exceeds 5.3, there are still infected individuals present in the
population, indicating the achievement of endemic stability. This approach is
applied consistently across all models where endemic stability is not initially

present.
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Figure 3.7: The figure illustrates the simulation results of an age structure with
immunity model, considering that new births depend on the adult population
and setting the death rate for children to zero. The simulations are conducted
for both children and adults, allowing us to observe the impact of different
infection rates on the outbreak dynamics within each age group. When the
infection rate for children is low, as well as when it is high, no outbreak is
observed in the stmulations. This suggests that children are less likely to become
susceptible and develop symptoms of the disease, regardless of the infection
rate. Howewver, it is important to note that this does not imply the eradication
of polio in the population. Instead, it indicates that children have a lower
susceptibility and are less likely to show symptoms compared to adults. In
contrast, when the infection rate for adults is low, no outbreak occurs, aligning
with the previous observations. However, when the infection rate for adults is
increased, an outbreak is observed in the simulations. This emphasizes that
adults are more susceptible to the disease and can experience a higher risk of
infection and symptoms when the transmission rate is higher. Interestingly, the
simulation results for the age structure with immunity model closely resemble
those of the total age structure simulation. This suggests that while the infected
population may appear to reach zero, indicating a potential eradication of the
disease, it is more likely that children who were less affected by the disease
during their childhood may become susceptible and develop symptoms when
they reach adulthood.

This analysis focuses on the relationship between new births and the
adult population, as well as the assumption of a zero death rate for children.

The results of the simulation provide interesting insights into the dynamics of
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polio infection in different age groups.

In the simulation, it is observed that the results for the children pop-
ulation are consistent regardless of whether the infection rate is low or high.
This suggests that polio does not cause significant outbreaks among children
and that they are less likely to become symptomatic when infected. This can
be attributed to factors such as their immune response or previous vaccina-
tion, which provide a level of protection against the disease. Consequently,
the impact of polio on the children population remains minimal throughout
the simulation.

In contrast, the simulation results for the adult population reveal dis-
tinct patterns depending on the infection rate. When the infection rate is
low, similar to the observations in the previous analysis, polio does not have
a substantial impact on the adult population. The number of symptomatic
cases remains low, indicating that the disease does not spread widely among
adults in this scenario.

However, when the infection rate is high, an outbreak occurs in the
adult population. In this scenario, a larger proportion of adults become in-
fected, resulting in an increased number of symptomatic cases. Additionally,
some individuals may develop asymptomatic infections and subsequently ac-
quire immunity. This suggests that when the infection rate for polio is high,
adults are more likely to experience symptoms compared to children. The
higher number of symptomatic cases among adults may be attributed to fac-
tors such as weaker immune responses or a higher susceptibility to the disease.

Interestingly, the simulation also indicates the eradication of polio in

the adult population. The number of infected individuals decreases to zero,
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indicating that the disease has been effectively controlled and eliminated. How-
ever, this does not guarantee long-term eradication, as the simulation suggests
that children who were never infected with polio during their younger years re-
main susceptible as they transition into adulthood. If polio were to re-emerge
or be reintroduced into the population, these previously uninfected individuals
would be more likely to become symptomatic and contribute to the spread of
the disease among adults.

In the age structure model, we have observed that the disease has been
successfully eradicated. However, our main objective is to ensure that the
model achieves endemic stability. Therefore, it is crucial to explore the condi-
tions required to reach this state. One of the factors examined was the increase
in the infectious rate, aiming to have infected individuals within the popula-
tion. It was noted that when the infection rate is equal to or greater than 5.3,
there are still infected individuals present in the population, thereby achieving

endemic stability.

Force of infection and Disease incidence

In the analysis of the force of infection and disease incidence, we focus
on examining the average force of infection and disease incidence and making
a comparison between the single age class and two-age class models. The aim
of this analysis is to gain insights into the conditions necessary for the disease
to reach an endemic state in the population.

By comparing the single age class and two-age class models, we can
assess how different modeling approaches capture the dynamics of the force

of infection and disease incidence. The single age class model assumes a ho-
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mogeneous population, while the two-age class model incorporates age-specific
parameters and compartments to account for variations in susceptibility, trans-
mission, and recovery rates between different age groups. By comparing the
results of these two models, we can gain insights into the influence of age-

specific dynamics on the force of infection and disease incidence.
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Figure 3.8: This study conducts a comparative analysis of force of infection
and disease incidence dynamics in single age class and two-age class models
with immunity. By varying the transmission rate from 0.0 to 2.0, we observe
a notable decrease in disease incidence in the two-age class model. This re-
duction can be attributed to the incorporation of age-specific parameters and
population structures, which enhance the model’s accuracy in capturing real-
world dynamics. In the age structure analysis, we consider the scenario when
W= 5]]\\;—2 and p. = 0, considering child births originating from adults. This
enables us to assess the impact of intergenerational transmission within the
population. By integrating these age-specific parameters and population struc-
tures, the two-age class model offers a more comprehensive understanding of
disease dynamics, leading to a lower disease incidence compared to the single
age class model. This highlights the importance of considering age heterogene-
ity and demographic factors when studying disease spread and control strate-
gies.

In our study investigating the dynamics of polio transmission, we con-
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ducted experiments using both a single age class model and an age structure
model to understand the relationship between the force of infection, disease
incidence, and age-specific factors.

In the single age class model, we consistently observed that increasing
the infection rate resulted in a rise in the force of infection and disease inci-
dence. This indicated that higher infection rates increased the likelihood of
susceptible individuals becoming infected and developing symptoms. The rela-
tionship between infection rate and disease incidence showed an upward trend,
indicating that as infections increased, the number of symptomatic cases also
increased. However, at a certain threshold of infection rate, we noticed that
the disease incidence reached a plateau. This suggested that the rate of new
infections stabilized, resulting in a relatively constant level of symptomatic
cases over time.

Moving to the age structure model, we expanded our analysis to incor-
porate age-specific factors and their impact on disease dynamics. By consid-
ering birth and death rates that account for age-specific parameters, such as
the proportion of children and the lower likelihood of children dying from the
disease, we introduced a more realistic representation of the population.

Interestingly, with the inclusion of age-specific factors, we found that
the disease incidence reached a plateau more rapidly compared to the scenario
without considering age-specific considerations. The presence of children, who
were assumed to be more likely to be asymptomatic compared to adults, played
a significant role in shaping disease incidence levels. When we manipulated
the size of the children’s population, we observed notable differences in overall

disease incidence. This shift in the disease incidence peak was attributed to the

96



fact that infected children had a higher likelihood of remaining asymptomatic,
leading to a lower number of symptomatic cases. This finding aligned with
the understanding that children are more susceptible to polio and less likely
to become symptomatic than adults.

Throughout our investigation, we focused specifically on the context of
polio. The results from our study highlighted the complex interplay between
transmission rates, age-specific factors, and disease spread. By considering the
age structure and incorporating age-specific parameters, we gained valuable
insights into the differential contributions of different age groups to disease

transmission and the occurrence of symptomatic cases.
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3.3 Absence of Immunity and Partial Immu-

nity: Covid-19

3.3.1 Overview of Covid-19

The SARS-CoV-2 virus is responsible for causing Covid-19, an infec-
tious disease as identified by the World Health Organization (WHO). Initially
identified in 2019 in Wuhan City, Hubei Province, China, as an outbreak of
respiratory illness, it rapidly spread globally and was declared a pandemic in
2020 due to its high rate of infection and the significant impact it had on
public health and economies worldwide. Covid-19, also commonly referred to

as Coronavirus disease, belongs to the family of novel coronaviruses [32].

SARS-CoV-2 Transmission

The SARS-CoV-2 virus is a severe acute respiratory syndrome coro-
navirus that primarily spreads through respiratory droplets and particles re-
leased into the air when an infected person breathes, talks, coughs, sneezes, or
engages in activities that involve the release of respiratory secretions. These
droplets can be inhaled by others in close proximity or deposited on surfaces
that can be touched by individuals, leading to potential transmission through

contact [33].

Symptoms and Measures

Symptoms of Covid-19 typically manifest within a range of 2 to 14
days after infection, although it is important to note that an infected person

can be contagious to others for up to 2 days before symptoms appear [33].
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The contagious period can last for 10 to 20 days, varying depending on factors
such as an individual’s immune response and the severity of their illness. While
most people experience mild to moderate illness and recover without needing
special treatment, certain populations, such as those with weakened immune
systems, older adults, and individuals with underlying medical conditions, are
at higher risk of developing severe illness [32].

The impact of Covid-19 has been devastating, with millions of deaths
reported worldwide. In addition to the immediate health consequences, the
disease has caused lasting health problems in some survivors, including res-
piratory complications, cardiovascular issues, and other long-term effects that
are still being studied and understood by medical professionals.

To mitigate the spread of the virus, various preventive measures have
been recommended. These include staying at home and self-isolating when
feeling sick, wearing properly fitted masks in public spaces, practicing respi-
ratory etiquette by covering the mouth and nose when coughing or sneezing,
avoiding touching surfaces whenever possible, maintaining good hand hygiene
by frequently washing hands with soap and water or using alcohol-based hand
sanitizers, following social distancing guidelines, and adhering to local guid-
ance and regulations regarding gatherings and public health measures.

It is important to note that while individuals may recover from Covid-
19, there is a risk of subsequent infections as the disease does not necessarily
confer long-lasting immunity. This means that individuals can become sus-
ceptible to reinfection after recovering from the initial illness. As a result,
vaccination campaigns have played a crucial role in combating the virus, with

the goal of reducing the severity of the disease, preventing hospitalizations and
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deaths, and ultimately achieving herd immunity to protect vulnerable popula-
tions. Vaccines have been developed and approved for emergency use in many
countries, following rigorous testing and evaluation to ensure their safety and

efficacy.

3.3.2 Mathematical Models

In this section, we delve into the study of models that investigate the
intriguing phenomenon of absence or partial immunity. It is not uncommon
for individuals who have previously recovered from a disease or infection to
become susceptible to it again, even though they had developed some level
of immunity initially. This absence of immunity implies that their immune
system no longer provides adequate protection against the disease or infection,
leaving them vulnerable to illness once more.

To begin our analysis, we investigate the hypothesis that the power
of infection increases as individuals progress in age. This suggests that the
likelihood of infection progressing to a symptomatic state becomes higher as
age class increases. We can express this as the power of infection for children,
denoted by 7., being significantly smaller than the power of infection for adults,
denoted by 7,.

Additionally, we examine the power of infection for subsequent infec-
tion, denoted by 7", and compare it to the power of infection for primary
infections, denoted by mw. The aim here is to explore whether there is a de-
crease in the probability of subsequent infection among individuals who have
previously been infected. If the power of infection for subsequent infection

is lower than that of primary infections, it suggests a reduced likelihood of
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individuals being re-infected after recovering from the initial infection.

To achieve a comprehensive understanding of these aspects of infec-
tious diseases, we explore both single models and age-structured models. Sin-
gle models focus on studying the dynamics of infection and immunity in a
homogeneous population, assuming that everyone has the same level of sus-
ceptibility and recovery. On the other hand, age-structured models account
for the heterogeneity of populations by dividing individuals into different age
classes, recognizing that different age groups may exhibit varying levels of
susceptibility and recovery.

By investigating these models, we aim to shed light on the intricate
dynamics of subsequent infection and age-related susceptibility in the context

of Covid-19.

A. Single Age class model with Absence of Immunity

The single age class model used in this analysis is similar to the previ-
ously discussed immunity model. It consists of four compartments representing
different states individuals can be in during the disease prevalence: suscepti-
ble (S), infected (I), recovered (R), and diseased (D). However, unlike the
immunity model that considered birth and death rates to maintain population
balance, this model focuses on the phenomenon of absence of immunity.

When an individual recovers from the disease, instead of acquiring long-
lasting immunity, they become susceptible to the infection again. This implies
a transition from the recovered (R) and diseased (D) compartments back to
the susceptible (S) compartment, reflecting the loss of immune protection and

the potential for reinfection. By incorporating the absence of immunity mech-
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anism, we can observe the flow of individuals between compartments in the
population over time.

The mathematical equations (3.17, 3.18, 3.19, and 3.20) governing the
transition between these compartments capture the dynamics of the disease
in the single age class model. These equations describe the rates of change for
each compartment and determine how individuals move between susceptible,
infected, recovered, and diseased states. Simulating these equations allows
us to study the system’s behavior and explore the impact of the absence of
immunity.

The model simulation enables the investigation of conditions required
for achieving endemic stability, where the disease persists in the population
over the long term. By analyzing the system’s dynamics and studying its sta-
bility properties, we can gain insights into the factors contributing to sustained
disease transmission and its population-level impact.

Figure [3.9| visualizes the flow of individuals between compartments in
the single age class model, illustrating the transitions and interactions among
susceptible, infected, recovered, and diseased populations. This visualization
aids in understanding the disease dynamics and the role of absence of immunity
in shaping infection spread and persistence.

Through this analysis, we aim to deepen our understanding of the im-
pact of absence of immunity and explore the conditions necessary for estab-

lishing and maintaining endemic stability in the single age class model.
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Figure 3.9: This informative diagram presents a schematic representation of
the single age class model, focusing on disease transmission and progression
within a population comprising a single age group. In this model, the absence of
immunity 1s assumed, meaning individuals remain continuously susceptible to
the disease. By visualizing the transitions between compartments (Susceptible,
Infected, Recovered, and Diseased), the diagram provides a valuable insight
into the dynamics of disease within a homogeneous population.
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The set of equations (3.17) - (3.20) describe a single-age SIRD (Susceptible-



Infectious-Recovered-Disease) model for infectious diseases. Equation (3.17)
represents the rate of change of susceptible individuals, indicating how the
number of susceptible individuals changes over time. It considers the infection
rate of the disease, represented by A, which determines how easily the disease
spreads. The term AS % captures the rate at which susceptible individuals
become infected, proportional to the product of the number of susceptible in-
dividuals (S) and infectious individuals (I) divided by the total population size
(N). Additionally, the term « (R + D) represents the rate at which individu-
als lose their immunity and transition from the recovered (R) or disease (D)
compartments back to the susceptible compartment (S).

Equation (3.18) represents the rate of change of infectious individu-
als. It considers the infection dynamics, likelihood of infection progressing to
asymptomatic and symptomatic state. The term AS % represents the rate at
which susceptible individuals become infected, as mentioned earlier. The term
p(v + m)I capture the rate at which infectious individuals progress to asymp-
tomatic and symptomatic state. It is the product of the timescale that infec-
tions are contagious (p), the likelihood of infection progress to asymptomatic
state of infectious individuals (), and the power of infection of individuals
(7).

Equation (3.19) represents the rate of change of recovered individuals.
It accounts for the individuals who have recovered from the disease and loss
immunity. The term pyI represents the rate at which infectious individuals
become asymptomatic and transition to the recovered compartment (R). The
term o R represents the rate at which recovered individuals lose their immunity

and transition back to the susceptible compartment (S).
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Equation (3.20) represents the rate of change of disease individuals,
representing those who are symptomatic with the disease. The term prl rep-
resents the rate at which infectious individuals become symptomatic (disease)
and transition to the disease compartment (D). The term aD represents the
rate at which symptomatic individuals lose their immunity and transition back
to the susceptible compartment (S).

These equations provide insights into the dynamics of disease transmis-
sion, recovery, and disease within a single-age population. They highlight the
interplay between the various compartments and the factors influencing the
spread and control of infectious diseases. In this model, without accounting
for birth and death, the total population remains constant, indicating that
everyone is likely to be infected at least once during the course of the disease.

To gain further insights into the dynamics of the model, we can cal-
culate key epidemiological measures that provide valuable information about
disease transmission and impact. Two such measures are the force of infec-
tion and disease incidence, which can be computed using equations similar to
those used in the post-infection single-age model. These measures will help
us assess the intensity of disease transmission and the rate of new infections
over time, enhancing our understanding of the epidemiological dynamics in

the population.

Identifying Steady States

To analyze the steady states of the single age class model with absence
of immunity, it is necessary to simplify the model. The original model is

complex, and simplifying it would make it easier to identify the steady states.
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Following the approach used in the classical SIR model, we aim to
determine the equilibria of the equations. This helps us understand when we
have a disease-free equilibrium or a disease endemic state. In the single age
class model, we begin by introducing the variable R = R + D to account for
the loss of immunity. This modification leads to a new model formulation, as

demonstrated below.

ds 1 ~
— = -\S— R 3.21
dl 1
— = — — I .22
dR ~
- — o] — 2
o oyl — aR (3.23)

To analyze the steady states of the single age class model with absence
of immunity, we consider two equilibrium points: the disease-free equilibrium
and the disease-endemic equilibrium.

At the disease-free equilibrium, where the infected population [ is zero,
the susceptible population S reaches a value of @. This equilibrium repre-
sents the eradication of the disease.

At the disease-endemic equilibrium, where I # 0, we solve for the value

of I by setting ?j—f = 0. The equation becomes:

I -

—/\%S +a(N-S-1)=0
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Simplifying and substituting the value of S, we have:

I pyN N
—/\N%—i—al\f—a%—alzo

Solving for I, we obtain the steady state at the disease-endemic equi-

librium:

:aN(l—i—%)
py+a

I*
Therefore, we can calculate force of infection using I* as:

aN(A+py)
py+a

F=\"=
Additionally, the disease incidence rate can be defined as:

aN(1+ £t
D=~ prl* = pwg
py +
By analyzing the relationship between the force of infection and disease

incidence, we expect to see a linear relationship where an increase in the force

of infection results in a proportional increase in disease incidence.
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Figure 3.10: This graph illustrates the relationship between disease incidence
and force of infection in the single age class absence of immunity model. As the
force of infection increases, indicating a higher infection rate or increased con-
tact between susceptible and infectious individuals, the disease incidence also
increases. The relationship between these two variables is linear, highlighting
the direct impact of the force of infection on the occurrence of new infections
within the population.

Through our analysis of the single age class model with absence of
immunity, we anticipate finding a direct relationship between the force of in-
fection and disease incidence. Specifically, as the force of infection increases,
we expect to observe a corresponding increase in the number of new cases of
the disease. This phenomenon is expected due to the potential for individuals
in the population to experience reinfection as a result of the loss of immunity,
which can lead to an increase in the overall number of new cases of the dis-

ease. This is illustrated in the single age class model with absence of immunity
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flow chart, where individuals may transition back to the susceptible compart-
ment after a period of time, leading to an increased likelihood of infection and

subsequent disease incidence.

B. Age Structure Model with Absence of Immunity

The age structure model with absence of immunity follows a structure
similar to the age structure model with immunity, but with some differences. It
does not consider birth and death rates, focusing instead on the concept of loss
of immunity. This model incorporates two age classes and four compartments
(Susceptible, Infectious, Recovered, and Disease) to represent population dy-
namics.

The flow chart depicted in Figure |3.12] illustrates the transitions be-
tween compartments for each age class. Upon infection, individuals move from
the susceptible compartment to the infectious compartment. Subsequently,
they can transition to either the recovered or diseased compartments based on
the disease outcome. Recovered individuals have the potential to lose their im-
munity and return to the susceptible compartment, while diseased individuals
can also lose their immunity but remain in the diseased compartment.

The mathematical equations governing the age structure model without
immunity are presented in Equations (3.24 - 3.31). These equations describe

the rates of change for each compartment in each age class.
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Figure 3.11: This model illustrates the spread of infectious diseases within a
population using an age structure model that focus on absence of immunity.
The population is divided into two age groups: children and adults, represented
by the arrows flowing between the susceptible (S), infected (1), recovered (R),
and disease (D) categories. The arrows indicate the movement of individuals
as they transition between these compartments, capturing the transmission dy-
namics of the disease.
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djta = —Aa%Sa +aR, +aD, + 65., (3.25)
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e — prel.— BR.— bR, (3.28)

dza = PYala — BR, + R, (3.29)

2 — prel. — D, — 6D (3.30)

dg“ = pmaly — oDy + 6D, (3.31)

An age structure model, considering children and adults as distinct age
classes, provides valuable insights into the transmission dynamics of a disease
within a population. This model consists of compartments representing the
susceptible, infected, recovered (asymptomatic), and diseased (symptomatic)
populations.

In this simplified model, the total population is divided into two age
classes: children and adults. Each age class has its own set of compartments,
and the sum of individuals in each compartment within an age class adds up
to the total population of that age class.

To capture important aspects of disease transmission, the model incor-
porates various parameters. The infection rate (\.,) represents the rate at
which the disease spreads within each age class. The probabilities of transi-

tioning to the asymptomatic and symptomatic states are denoted by 7., and
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The parameters « reflect the loss of immunity in symptomatic and
asymptomatic infections within each age class. These parameters determine
the duration of immunity after recovering from the disease.

The parameter p represents the contagious period of infected individ-
uals, indicating the timeframe in which they can transmit the disease to sus-
ceptible individuals. The parameter § captures the transition rate between
age classes, representing the movement of individuals from one age class to
another as they age.

It is important to note that in this model, no birth or death processes
are considered. As individuals transition from the child age class to the adult
age class, the population of children eventually diminishes to zero. However, to
refine the model, we assume a zero-transition rate between age classes, meaning
children remain children indefinitely. This refinement allows us to examine
the dynamics of disease transmission while considering a fixed population of
children.

By simulating this refined model over a specified time period, we can
gain valuable insights into the dynamics of disease transmission, the differen-
tial impact on different age groups, and the potential for re-infection or loss
of immunity within the population. These insights can inform public health
strategies, intervention planning, and efforts towards disease control and pre-

vention.
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Figure 3.12: This model illustrates the spread of infectious diseases within
a population using an age structure model that focus on absence of immunity
without considering transition between age class. The population is divided into
two age groups: children and adults, represented by the arrows flowing between
the susceptible (S), infected (I), recovered (R), and disease (D) categories. The
arrows indicate the movement of individuals as they transition between these
compartments, capturing the transmission dynamics of the disease. This model
tllustrates that children class will remain children forever as well as the adult
population.
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Variable Description unit
A Infectious rate of susceptible population m
«@ The timescale of loss of immunity d;ys
T Power of infection, likelihood of infection progress to symptomatic dalys

y=(01-m) Likelihhod of infection progress to asymptomatic state d;ys
p Timescale that Infections are contagious dalys
0 Transition rate between age groups dalys
t Time days
S Number of susceptible people people
1 Number of infected people people
R Number of recovered(asymptomatic) people people
D Number of disease (symptomatic) people people
N Total number of people people
Table 3.2: This table presents the wunits associated with the wvariables

and parameters utilized in absence of immunity SIRD (Susceptible-Infected-
Recovered-Disease) models. The variables, representing population compart-
ments such as susceptible (S), infected (I), recovered (R), and disease (D),
are measured in absolute quantities or proportions. The parameters, including
infection rates, power of infection, and loss of immunity rates, possess spe-
cific units that may vary depending on the particular disease and context being

modeled.
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C. Single Age class Partial Immunity without Birth and Death

The single age class partial immunity model expands upon the SIRD
framework, focusing on the dynamics of re-infection. It specifically accounts
for scenarios where individuals can lose immunity after recovering from the
disease, such as Covid-19.

This model introduces six compartments to represent different states
of the population: susceptible (S), infected (I), recovered (R), disease (D),
susceptible to re-infection (S”), and infected through re-infection (I17).

By investigating the flow of individuals among these compartments, as
illustrated in Figure and analyzing the mathematical equations (3.32 —
3.37) governing the model, we gain valuable insights into the complex dynamics
of the disease.

This analysis allows us to explore the impact of partial immunity on
disease transmission and progression within the population. We observe how
individuals transition from susceptibility to infection, and potentially progress
to a recovered or diseased state. Additionally, we consider the possibility of in-
dividuals who are asymptomatic and symptomatic from the disease becoming

susceptible to re-infection, leading to a new cycle of infection.
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Figure 3.13: This model illustrates the dynamics of disease transmission and
progression within a population, accounting for compartments such as suscep-
tible, infected, recovered (asymptomatic), diseased (symptomatic), susceptible
to re-infection, and infected through re-infection. The model offers valuable
insights into the effects of partial immunity on disease spread and progression,
providing a comprehensive understanding of the interplay between different
compartments and the overall population dynamics.
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In the single age class partial immunity model, we utilize a set of math-
ematical equations to analyze the dynamics of various population compart-
ments. These equations provide valuable insights into the changes occurring

within the susceptible, infected, recovered, diseased, susceptible in the reinfec-
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tion group, and infected in the reinfection group populations.

Equation (3.32) characterizes the rate of change of the susceptible pop-
ulation, depicting the decrease in susceptible due to disease transmission. The
parameter A\ represents the infection rate, indicating how quickly susceptible
individuals become infected. The variable S denotes the susceptible popula-
tion, I represents the infected population, and N signifies the total population
size.

Equation (3.33) represents the rate of change of the infected population,
highlighting its increase through new infections and decrease through recovery
(asymptomatic) and disease progression (symptomatic). This equation enables
us to understand the fluctuations in the number of individuals actively infected
with the disease over time.

Equation (3.34) describes the rate of change of the recovered popula-
tion, capturing its increase through recovery from the infection. However, it
also accounts for the potential decrease in the recovered population due to loss
of immunity and subsequent reinfection. This equation provides insights into
the dynamics of individuals who have successfully recovered from the disease
but remain susceptible to reinfection.

Equation (3.35) represents the rate of change of the diseased popula-
tion, illustrating its increase through disease progression, as individuals tran-
sition from being infected to exhibiting symptoms. Similar to the recovered
population, the diseased population can also decrease due to the loss of im-
munity leading to reinfection. This equation allows us to understand the
dynamics of individuals affected by symptomatic disease and their potential

for reinfection.
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Equation (3.36) focuses on the dynamics of individuals in the suscepti-
ble population in the reinfection group, who have previously been infected. It
considers the possibility of reinfection, acknowledging that individuals in this
group can become susceptible to the disease again. This equation explores
how the susceptible population in the reinfection group changes over time,
considering both natural population loss and reinfection dynamics.

Equation (3.37) provides insights into the dynamics of individuals who
have been previously infected but are now susceptible to reinfection. It consid-
ers the possibilities of reinfection, recovery, and disease progression within this
specific population subgroup. By examining this equation, we can understand
how the number of individuals in the reinfection group who become reinfected
or recover evolves over time.

Through the examination and analysis of these equations, we can gain
a better understanding of how different population compartments interact and
change over time in the context of absence or partial immunity. These math-
ematical representations allow us to explore the complex dynamics of disease
transmission, recovery, reinfection, and disease progression, providing crucial
insights into the behavior of infectious diseases within a single age class pop-

ulation.

D. Age Structure Model Partial Immunity without Birth and Death

The age structure model, an extension of the single age class partial
immunity model, provides a more comprehensive understanding of disease dy-
namics by considering the heterogeneity of age groups within the population.

This model acknowledges that individuals of different ages may have distinct

118



levels of susceptibility, infection rates, asymptomatic and symptomatic cases,
and re-infection dynamics.

In the age structure model, the population is divided into multiple age
groups, each characterized by its own compartments representing the suscepti-
ble, infected, recovered (asymptomatic), diseased (symptomatic), susceptible
to re-infection, and infected through re-infection populations. The transitions
between these compartments are governed by age-specific parameters.

By examining the flow of individuals among these compartments, as
depicted in Figure and analyzing the system of equations (3.38 - 3.49) that
describe the model, we gain a deeper understanding of the intricate dynamics
of disease transmission and progression within different age groups.

Incorporating age structure into the partial immunity model enables us
to explore the influence of age-related factors on disease dynamics. This in-
cludes comprehending the varying vulnerability of specific age groups to infec-
tion, assessing the potential for intergenerational transmission, and evaluating
the effectiveness of age-targeted interventions. By accounting for age-specific
parameters, we can develop more targeted strategies for disease control and
prevention, tailored to the unique characteristics and requirements of different

age groups in the population.

119



Figure 3.14: This model captures the dynamics of disease transmission and
progression within a population that is divided into different age groups. The
compartments include susceptible (S), infected (1), recovered (R), diseased (D),
susceptible to re-infection (S™), and infected through re-infection (I") for each
age group. By analyzing the transitions between these compartments and con-
sidering age-specific parameters, we gain insights into the interplay between
age structure and partial immunity in shaping the spread and impact of the
disease within the population.
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The age structure model with partial immunity builds upon the single
age class model by introducing two distinct age classes: children and adults.
The total population is now represented as the sum of individuals in both age
classes, denoted as N = N, + N,. This extension enables us to capture the
different dynamics and characteristics of disease transmission and progression
within each age group.

In this model, we introduce the transition rate parameter §, which ac-
counts for the movement of individuals between the two age classes. This

parameter reflects the natural aging process and population dynamics, allow-
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ing us to analyze how changes in age structure influence disease spread and
progression.

The equations governing the age structure model with partial immunity
are similar to those of the single age class model, but they are now differen-
tiated for each age class. Variables and parameters such as the susceptible
population (.S), infected population (I), recovered population (R), diseased
population (D), and the susceptible and infected populations in the reinfec-
tion group (S” and ") are considered separately for each age class.

However, we acknowledge a limitation in the original model, which
could result in the eventual depletion of the child population as they transition
to adulthood. To overcome this issue, we refine the model by introducing a
modification. In the refined model, we assume that children remain in the
child age class indefinitely, with a transition rate of zero between age classes.
This modification ensures the stability of the child population throughout the

simulation, addressing the concern of population depletion.
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Figure 3.15: This model captures the dynamics of disease transmission and
progression within a population that is divided into different age groups. The
compartments include susceptible (S), infected (1), recovered (R), diseased (D),
susceptible to re-infection (S™), and infected through re-infection (I") for each
age group. By analyzing the transitions between these compartments and con-
sidering age-specific parameters, we gain insights into the interplay between
age structure and partial immunity in shaping the spread and impact of the
disease within the population. This is a refined model schematic where it does
not considers the transition rate between age classes.
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To further enhance our understanding of disease dynamics and popu-
lation interactions, we can expand the age structure model with partial im-
munity to incorporate important demographic processes such as birth and
natural deaths. By including these factors, we can investigate how population
growth, mortality rates, and new births impact disease transmission patterns
and overall population dynamics. This expanded model provides a more com-
prehensive framework for studying infectious diseases in realistic population

settings, considering the complex interplay between epidemiological factors,

age structure, and demographic processes.
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E. Single Age class Partial Immunity with Birth and Death

To enhance the realism of our model, we will now incorporate the im-
portant factors of births and deaths into the framework. This updated model
recognizes that real-world populations are dynamic, with new individuals be-
ing born and existing individuals naturally passing away.

By considering the impact of births and deaths, we can capture the
continuous renewal and replacement of individuals within a population. This
becomes especially important when studying infectious diseases, as the pop-
ulation’s composition changes over time due to the interplay between birth,
death, and disease transmission.

Expanding on the previous model, we maintain the six compartments:
susceptible (S), infected (I), recovered (R), disease (D), susceptible in the
reinfection group (S”), and infected in the reinfection group (I”). However,
we now recognize that the total population is subject to variations caused by
births and deaths.

To illustrate the flow of individuals among these compartments and
the influence of births and deaths, we can refer to the flow chart shown in
Figure Additionally, the mathematical equations (3.50 — 3.55) govern
the model, accounting for the rates of change in each compartment while
considering births and deaths.

By incorporating births and deaths into the model, we can more accu-
rately reflect the dynamic nature of populations and the continuous renewal
of individuals. This expanded framework enables us to investigate the impact
of population growth, mortality rates, and new births on disease transmission

patterns and overall population dynamics.
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Figure 3.16: This flow diagram represents the movement of individuals among
the different compartments in the single age class model. It shows the tran-
sitions between the susceptible (S), infected (I), recovered (R), disease (D),
susceptible in the reinfection group (S”), and infected in the reinfection group
(I" ) populations. Additionally, it highlights the influence of births and deaths
on the overall population dynamics. The arrows indicate the direction of flow,
and the labels on the arrows represent the corresponding transitions and pro-
cesses. This diagram provides a visual representation of the interconnectedness
and flow of individuals within the model, incorporating the effects of both dis-
ease transmission and population dynamics.
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In this refined model, we observe a system of equations that builds upon
the single age class model with partial immunity by incorporating birth and
death processes. These additional equations consider the natural renewal of
the population through births and the attrition of individuals through deaths.

Equation (3.50) describes the rate of change of the susceptible popula-
tion, accounting for both disease transmission and population growth through
births. It signifies that the susceptible population increases as a result of new
births and decreases due to disease transmission and natural deaths. The
infection rate, the number of susceptible and infected individuals, as well as
natural deaths, influence the dynamics of the susceptible population.

Equation (3.51) represents the rate of change of the infected population,
considering the contributions of new infections, recoveries, disease progression
(symptomatic), and natural deaths. This equation allows us to understand
how the number of actively infected individuals changes over time, considering
both disease dynamics and population attrition.

Equation (3.52) captures the rate of change of the recovered popula-
tion, emphasizing the impact of recoveries on its increase, and accounting for
natural deaths and re-infection due to loss of immunity. This equation pro-
vides insights into the dynamics of individuals who have recovered from the
disease and the potential for re-infection within the population.

Equation (3.53) reflects the rate of change of the diseased population,
considering the increase through symptomatic disease progression, and the
decrease through natural deaths and re-infection due to loss of immunity. It
helps us understand the dynamics of individuals affected by symptomatic dis-

ease and their vulnerability to re-infection.
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Equation (3.54) focuses on the rate of change of the susceptible popula-
tion in the reinfection group, considering the dynamics of reinfection and nat-
ural deaths. It provides insights into the susceptibility to re-infection among
individuals who have previously been infected.

Equation (3.55) represents the rate of change of the infected population
in the reinfection group, accounting for the dynamics of reinfection, recoveries,
disease progression (symptomatic), and natural deaths. This equation helps
us understand how individuals in the reinfection group transition between
different infection states over time.

By incorporating these refined equations into the model, we gain a
more comprehensive understanding of the dynamics of an infectious disease
within a population. The inclusion of birth and death processes allows for a
more realistic representation of population renewal and attrition, enabling us
to study disease dynamics and population stability in a more accurate and

nuanced manner.

F. Age Structure Model Partial Immunity with Birth and Death

The age structure model with partial immunity and incorporation of
births and deaths is an advanced framework that considers the dynamic na-
ture of real-world populations. By considering the continuous renewal and
replacement of individuals through births and deaths, as well as age-specific
dynamics and partial immunity, this model provides a more realistic depiction
of disease dynamics.

In this expanded model, the population is divided into different age

groups, such as children and adults. Each age group has its own compart-
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ments representing susceptible, infected, recovered (asymptomatic), diseased
(symptomatic), susceptible to re-infection, and infected through re-infection
populations. The transitions between these compartments are influenced by
age-specific parameters, including infection rates, transition rates, likelihood
of infection progress to asymptomatic and symptomatic state, and reinfection
dynamics.

The flow of individuals among these compartments, as illustrated in
Figure [3.17] is described by a system of equations (3.56 - 3.67). These equa-
tions capture the interactions between disease transmission, partial immunity,
births, and deaths. They quantify the rate of change for each population
compartment and account for the transitions between them. Additionally,
they consider factors such as disease transmission from infected to suscepti-
ble individuals, the development and recovery of partial immunity, reinfection
dynamics, and the impact of births and deaths on the overall population size.

By incorporating births and deaths into the age structure model with
partial immunity, we gain a more accurate representation of population dy-
namics and their interaction with infectious diseases. This expanded frame-
work enables us to examine the effects of population growth, mortality rates,
and new births on disease transmission patterns, age-specific dynamics, and
overall population dynamics. It provides valuable insights for understanding
the complex interplay between disease dynamics, age structure, and popula-
tion demographics, empowering decision-makers in public health interventions

and policy planning.
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Figure 3.17: The flow diagram illustrates the dynamic movement of individuals
among different compartments in the age structure model with partial immu-
nity, accounting for births and deaths. The diagram showcases the transi-
tions between susceptible, infected, recovered (asymptomatic), diseased (symp-
tomatic), susceptible to re-infection, and infected through re-infection popula-
tions for each age group. This diagram visualizes the complex interactions and
pathways within the model, highlighting the interplay between disease transmis-
ston, partial immunity, births, deaths, and population dynamics.
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The age structure model with partial immunity and incorporation of

births and deaths represents an advanced framework that expands upon the

single age class model by considering the specific dynamics of disease transmis-

sion and progression within different age groups. By dividing the population

into children and adults, this model acknowledges the variations in suscepti-

bility, infection rates, and recovery rates that can occur between these distinct

age classes.

In this expanded model, a new parameter § is introduced to quantify

the transition rate between the children and adult age classes. This parameter



captures the natural aging process and the movement of individuals from one
age class to another, reflecting the ongoing population dynamics.

The mathematical equations governing the age structure model with
partial immunity and incorporation of births and deaths build upon the pre-
vious model but introduce additional differentiations for each age class. For
example, we now have separate equations to track the rate of change of the
susceptible population (S) in children (S.) and adults (S,). Similarly, the
equations for the infected population (I), recovered population (R), diseased
population (D), and the susceptible and infected populations in the reinfection
group (5" and I") are tailored for each age class.

Upon closer examination of the system of equations, it becomes ev-
ident that the initial assumption of births occurring throughout the entire
population may not accurately align with real-world dynamics. To address
this discrepancy, we can refine the equations by considering that births only
occur among adults, as they are the ones biologically capable of giving birth.
Additionally, we assume that the natural death rate for children is zero.

To achieve a more realistic representation of the birth process, we in-
troduce the concept of an equal birth and adult death rate, denoted as p. The
value of i is determined by the transition rate between age classes, §, and the
ratio of the children population, N., to the adult population, N,. This mod-
ification ensures that the birth process aligns with the biological capacity for
reproduction in the adult population and reflects the natural balance between
births and adult deaths.

By incorporating these refinements, we can enhance the model’s accu-

racy in mimicking real-world population dynamics, where births are limited
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to adults and children have negligible natural death rates. This updated rep-
resentation provides a more realistic portrayal of the birth process within the
population, enabling us to gain deeper insights into the interplay between
demographic factors and disease spread.

By incorporating the age-specific dynamics of disease transmission and
accounting for the interplay between children and adults, the age structure
model with partial immunity and incorporation of births and deaths provides
a more comprehensive framework for analyzing infectious diseases. With this
foundation, we can now shift our focus towards examining two important mea-
sures: the force of infection and disease incidence. These metrics enable us to
assess the intensity and impact of disease transmission within each age class
and the overall population, providing valuable insights into the dynamics of

infectious diseases within an age-structured population.
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Examining Force of infection and Disease incidence of partial immu-

nity models
1. Single Age Structure Models

Our analysis builds upon the absence of immunity model by incorpo-
rating partial immunity dynamics, enabling us to capture the occurrence of
multiple infections and account for birth and natural deaths. This extension
includes notable improvements, particularly in the calculation of the aver-

age force of infection and the modification of disease incidence calculations to
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accommodate re-infection dynamics. These refinements enhance our under-
standing of disease transmission within a single age class, allowing us to gain
more comprehensive insights into the spread of the disease.

The average force of infection serves as a key measure in understanding
the rate at which susceptible individuals become infected with the disease.
It considers both the transmission rate (A) and the re-infection transmission
rate (A"). By summing two terms, namely the transmission rate multiplied by
the number of infected individuals (7), and the re-infection transmission rate
multiplied by the number of re-infected individuals ("), we obtain a compre-
hensive estimation of the force driving the spread of the disease. This approach
allows us to consider both initial infections and subsequent re-infections, pro-
viding a more accurate representation of disease transmission dynamics.

To normalize the average force of infection, we divide the sum by the
product of the total population size (N) and the time interval (7") over which
the calculations are performed. This normalization accounts for the population
size and the duration of the analysis, ensuring that the force of infection is
expressed in a meaningful way. The resulting equation becomes:

[T ATt

F= .
N (3.68)

Similarly, we modify the calculation of disease incidence, which repre-
sents the number of new symptomatic individuals occurring within a specific
time period, to incorporate re-infection disease incidence. The disease inci-
dence now comprises two components: the product of the power of infection
rate (pm) and the number of infected individuals (1), and the product of the

re-infection power of infection rate (p7”) and the number of re-infected indi-

135



viduals from the disease. The equation for disease incidence becomes:

T
) [+ pr"I7)dt
p—Jolom NY{” ) (3.69)

Furthermore, when we extend these concepts to the age structure model
with partial immunity and incorporate births and deaths, we can examine age-
specific force of infection and disease incidence, allowing us to gain a deeper
understanding of how disease transmission and its impact vary across different

age groups.

2. Age Structure Models

In addition to extending the absence of immunity model to incorporate
partial immunity dynamics, we can further enhance our analysis by applying
the concepts of force of infection and disease incidence to an age structure
model. The age structure model recognizes the variations in susceptibility,
infection rates, and recovery rates that can occur between different age groups,
providing a more refined understanding of disease transmission dynamics.

In the age structure model, the force of infection is calculated separately
for each age class. We consider the transmission rates specific to children (A.)
and adults ()\,), as well as the re-infection transmission rates (A, and \!) for
each age class. By multiplying these transmission rates by the respective num-
ber of infected individuals (I and I") in each age class, we obtain age-specific
contributions to the force driving the spread of the disease. Summing these
contributions provides a comprehensive estimation of the force of infection in
the age structure model, accounting for both initial infections and re-infections

within different age groups.
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To normalize the age structure model force of infection, we follow the
same procedure as in the single age class model. The sum of the age-specific
force of infection terms is divided by the product of the total population size
(N) and the time interval (T') over which the calculations are performed. This
normalization ensures that the force of infection in the age structure model
is expressed in a meaningful way, considering the population size and the
duration of the analysis.

I O ARTS W AR RS ST

F= 3.70
NT (3.70)

Similarly, we can modify the calculation of disease incidence in the age
structure model to incorporate re-infection disease incidence. Disease inci-
dence represents the number of new symptomatic individuals occurring within
a specific time period in each age class. We incorporate two components: the
product of the power of infection rate (pm) and the number of infected indi-
viduals (), and the product of the re-infection power of infection rate (pz")
and the number of re-infected individuals from the disease. By summing these
age-specific components, we obtain the overall disease incidence in the age
structure model, accounting for both initial infections and re-infections across
different age groups.

S (el + maL) + 9 (7017 + 7,1,))dt

D=0 71
NT (3.71)

By applying the concepts of force of infection and disease incidence to
the age structure model, we gain a more nuanced understanding of disease
transmission dynamics within different age groups. This enhanced analysis al-

lows us to capture age-specific variations in susceptibility, transmission rates,
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and disease burden, enabling us to develop targeted public health strategies
and interventions to control the impact of the disease on the population, par-
ticularly considering the potential for re-infections.

Having extended the absence of immunity model to incorporate partial
immunity dynamics and applied the age structure model to analyze disease
transmission, we can now examine the results obtained from these enhanced
approaches. By considering multiple infections, birth and natural deaths, and
age-specific factors, our analysis provides a comprehensive understanding of

disease transmission dynamics and its impact on different population groups.
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Variable Description unit
A Infectious rate of susceptible population

peopli*days

A" Re-nfectious rate of susceptible population Sooplo*days
I Birth and Death rate dalys
s Likelihood of infection progress to symptomatic state dalys
" Likelihood of re-infection progress to symptomatic state d;ys
vy=(1-m) Likelihhod of infection progress to asymptomatic state d;ys
4" =(1—=") Likelihhod of re-infection progress to asymptomatic state d;ys
p Timescale that infections are contagious dalys
A Timescale that re-infections are contagious dalys
t Time days
S Number of susceptible people people
I Number of infected people people
R Number of recovered(asymptomatic) people people
D Number of disease (symptomatic) people people
S" Number of re-infected susceptible people people
Ir Number of re-infected people people
N Total number of people people

Table 3.3: In the table, the units of the variables and parameters in both the
partial immunity model without births and deaths and the partial immunity
model with births and deaths are provided. The variables, such as suscepti-
ble (S), infected (I), recovered (R), diseased (D), susceptible in the reinfection
group (S”), and infected in the reinfection group (I"), are measured in popula-
tion count (number of individuals). The parameters are expressed as per capita
rates, representing the rate of occurrence per individual per unit of time. These
units provide a clear understanding of the measurement scale and rate at which
the variables and parameters are considered in the partial immunity models,
facilitating the interpretation and application of the models in the context of
infectious disease dynamics.

3.3.3 Results

Our study focuses on exploring and comparing two models: the single
age class models and the age structure models. These models are designed
to examine the dynamics of disease transmission and share certain parameter
values and initial conditions. By investigating these models in parallel, we aim
to gain a comprehensive understanding of the impact of different modeling
approaches on our analysis and insights into disease spread. The comparison

between these models allows us to assess the influence of age-specific factors
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and population structure on disease transmission dynamics. Through this
comparative analysis, we can derive valuable findings that can inform decision-
making and contribute to the development of targeted strategies to mitigate

the spread and impact of Covid-19.

Single age class with Absence of Immunity

In our investigation of the single age class model with immunity, our
objective is to examine the influence of varying infection rates (0.1 and 2.0)
on disease dynamics. Within this model, individuals can experience two out-
comes following infection: they either become asymptomatic or progress to a
symptomatic state. The probability of progressing to the asymptomatic state
is 0.95, while the probability of transitioning to the symptomatic state is 0.05.
To maintain population equilibrium, we assume a timescale of 0.01 for the loss
of immunity post-infection, for both asymptomatic and symptomatic cases.
By conducting simulations over a 10-year period, we can observe the dynam-
ics of immunity over time. Additionally, we consider a contagious timescale
of 0.15, representing the duration during which individuals are infectious and
can transmit Covid-19.

To apply these models to a real-world scenario, our focus is specifically
on the city of San Francisco, utilizing population data from 2021. With an
estimated population of approximately 815,201 individuals, we initialize the
simulation with around 100 infected individuals, assuming no individuals are
classified as recovered or diseased at the beginning.

By incorporating these parameters and contextualizing the models for

San Francisco, we can simulate and analyze the spread of the disease, monitor
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the progression of immunity, and derive insights into the potential for endemic
stability within the city. This approach enables us to assess the impact of dif-
ferent transmission rates on disease dynamics, providing valuable information
for understanding and managing the spread of the disease in the context of

San Francisco.
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Single Age Class with absence of immunity

«10° A =0.10 and = = 0.05
10 T T T T T T T
8F a
c
Qo 6+ -
8
2
o 4r -
a S wervereens R
- — =] m———— D
2+ a
0 — — — —— —— - I
0 500 1000 1500 2000 2500 3000 3500 4000
Time (days)
«10° A =2.00 and = = 0.05
10 T T T T T T
S servenerens R
-] =————— D
8- _
c e e L L LTI
2 6f i
K]
2
g at i
o
2} 1
|

0 500 1000 1500 2000 2500 3000 3500 4000
Time (days)

Figure 3.18: The figure displays the simulation results from a single age class
model, demonstrating the influence of varying infection rates on the spread of
a disease within a population. When the infection rate is low, the number of
infections remains relatively limited, gradually increasing over time. The ma-
jority of infected individuals recover promptly, resulting in a small proportion
of symptomatic cases. However, as the infection rate increases, the number of
infections experiences a rapid upsurge, leading to a larger pool of infected indi-
viduals within the population. Despite the higher overall number of infections,
the proportion of symptomatic cases remains relatively small, indicating that
a significant portion of infected individuals either experience asymptomatic in-
fections or develop mild symptoms. Additionally, it is worth noting that the
model reaches a steady state, where the infection dynamics stabilize over time.
This suggests that the disease has reached an equilibrium within the population,
with new infections and recoveries balancing each other out. Furthermore, the
results reveal an interesting observation: at higher infection rates, the number
of symptomatic cases is low. This phenomenon is an indication of endemic
stability, where the disease persists in the population at a relatively stable level,
with a lower proportion of symptomatic cases over time.
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Our research findings indicate that when the infection rate among the
susceptible population is set to a very low value, the impact on the overall
population is minimal. In such scenarios, the transmission of Covid-19 occurs
slowly, resulting in a low number of infections and a small proportion of symp-
tomatic cases. Infected individuals tend to recover quickly, leading to a short
duration of infection.

However, increasing the infection rate among the susceptible population
leads to a notable rise in the number of infections within a shorter timeframe.
This higher infection rate results in a larger number of individuals contracting
Covid-19, including a higher proportion of asymptomatic cases. Our model
simulations indicate that a steady state is eventually reached, where Covid-
19 becomes contained within the population. This can be attributed to the
high level of infection and a reduced number of symptomatic cases, indicating
a state of endemic stability. It is worth noting that our model assumes the
hypothesis that the probability of progressing to a symptomatic state, m, is
the same for initial infections and reinfections.

It is important to acknowledge that our models have certain limitations.
They do not incorporate demographic factors such as birth and death rates,
assuming a constant population size throughout the simulation. Additionally,
the development of long-term immunity to Covid-19 is not considered in our
simulations. Instead, we focus on the possibility of reinfection due to the loss
of immunity after recovery. This simplification allows us to specifically analyze
the dynamics of disease transmission and isolate the impact of changes in the

infection rate on the spread of Covid-19.
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Age Structure with Absence of Immunity

In our investigation of the two-age class model with absence of immu-
nity, we explore various infections rate of susceptible population, similar to
the single age class model and immunity analysis. To account for age-specific
dynamics, we introduce a distinction between children and adults by assum-
ing different power of infection values: a lower value for children (7.) and
higher values for adults (7,). Specifically, we consider transmission rates of
m. = 0.005 and 7, = 0.05. By incorporating these different power of infection
values for adults, we aim to understand how the level of infection contributes
to the stability of the disease within the population.

Furthermore, we account for different likelihood of infection progress to
asymptomatic state between children and adults. The likelihood of infection
for children is set to be approximately 0.995, while for adults, we consider
values of 0.95. This variation in likelihood of infection allows us to examine
the impact of different recovery dynamics on the overall disease dynamics.
Additionally, since this model considers loss of immunity, we set the loss of
immunity rate for both asymptomatic and symptomatic individuals in both
age groups to be 0.01.

To simulate the age transition from children to adults, we set the tran-
sition rate to be around 0.001 for children transitioning to adults, and 0 for
adults transitioning to other age groups, as this model focuses on the children-
to-adults transition.

In the context of San Francisco, we adapt the population data from
2021. Based on available information, the population of children between 0

and 2 years old in San Francisco was approximately 23,996, while the adult
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population was around 791,205. We use these population figures to initialize
the model, while maintaining similar initial conditions for the other compart-
ments as in the single age class model.

By considering these parameters and population data, our goal is to
gain insights into the dynamics of the disease and its endemic stability in a

population with distinct age groups.
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Total (Children and Adults) Age Class with Absence of Immunity
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Figure 3.19: In this study, we investigate the impact of infection rates on
the dynamics of Covid-19 within a population that includes both children and
adults. Using an age structure model that does not consider immunity, we ana-
lyze important parameters such as the infection rate among susceptible individ-
uals, the probability of infection progressing to symptomatic or asymptomatic
states, the duration of immunity loss following infection for both symptomatic
and asymptomatic cases, and initial population values based on San Francisco’s
demographics. Our findings demonstrate an equilibrium state that reflects the
patterns observed in real-world Covid-19 outbreaks. Specifically, when infection
rates are low, no significant outbreaks occur. However, as the infection rates
icrease, outbreaks become evident and spread within the population becomes
more pronounced. It is important to note that our model does not incorporate
the presence of immunity, which can significantly influence disease dynam-
1cs. Additionally, the specific results are based on the parameters and initial
population values used in our study, which are specific to the context of San
Francisco.

Our analysis demonstrates that lower infection rates have minimal im-
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pact on the population, as they do not trigger outbreaks of Covid-19. Con-
versely, higher infection rates have a profound impact, leading to significant
outbreaks and a decrease in the total number of susceptible individuals. These
findings suggest that the population reaches a steady state, indicating the po-
tential for an endemic stability in the future.

However, to gain a more comprehensive understanding of the Covid-19
dynamics, it is crucial to delve deeper into the age structure model. By con-
ducting separate simulations for children and adults, we can acquire valuable
insights into how the virus affects each age group. Such a focused analysis
will provide us with a more nuanced perspective on the transmission patterns,
susceptibility, and potential risks associated with different segments of the

population.
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Age structure model absence
of immunity

Children Adults

)\c = '\a =0.10 and = 0.005, = 0.05 +10° A=A, =010 and . =0.005, m_ = 0.05
T T y y g

o
T

It
@
Population
N

L n L L L n
0 500 1000 1500 2000 2500 3000 3500 4000

o 500 1000 1500 2000 2500 3000 3500 4000
Time (days)

Time (days)

A=A, =2.00 and 7 =0.005, 7, = 0.05 105 A=A, =2.00 and 7= 0.005, m, =0.05
T
T T

Population
IS

~

o

I T ? I T i T
- - . - . 0 500 1000 1500 2000 2500 3000 3500 4000
0 500 1000 1500 2000 2500 3000 3500 4000 Time (days)

Time (days)

Figure 3.20: This figure illustrates the outcomes of the age structure model
(Susceptible-Infected- Recovered-Disease) when considering the dynamics of
Couvid-19 in the absence of immunity. The model incorporates the specified ini-
tial conditions and parameter values to simulate the spread of the disease. The
figure is divided into two sections, with the left side representing the simulation
results for the children population and the right side depicting the simulation
results for the adult population. In the simulation for the children population,
we observe consistent patterns across different infection rates. There are no
outbreaks observed in this population, and the number of children remains con-
stant throughout the simulation period. This indicates that the transition from
the children age class to the adult age class does not occur in this model, as
the children population remains unaffected by the disease dynamics. On the
other hand, the simulation for the adult population closely aligns with the over-
all population results. The infection rates used in the simulation correspond
to the occurrence of outbreaks, mirroring the dynamics observed in the total
population. This suggests that the behavior and infection patterns within the
adult population heavily influence the overall trends and patterns in the age
structure model. The dynamics observed in the adult population have a signif-
icant impact on the spread and progression of the disease throughout the entire
population.

Our analysis of simulations using an age structure model has yielded
intriguing findings when comparing the dynamics of Covid-19 in adults and the
total population, which includes both children and adults. These observations

provide valuable insights and emphasize the significance of considering age-
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specific factors when managing the pandemic effectively.

Examining the simulations of the children population, we consistently
observe a distinctive pattern. Regardless of the infection rates tested, no
outbreaks occur among children, and their population size remains constant
throughout the simulation period. This suggests that the transition from the
children age class to the adult age class does not take place in this specific
model. The absence of outbreaks among children indicates either a lower
susceptibility to Covid-19 at a younger age or a different disease progression
that does not result in noticeable outbreaks.

These findings contribute valuable insights into the dynamics of Covid-
19. The age structure model implies that every individual in the population
is susceptible to contracting the virus at some point in their lives, regardless
of age. However, the simulations for children indicate a lower susceptibility
or milder symptoms, which aligns with real-world observations of children
experiencing less severe disease outcomes compared to adults.

In contrast, the simulations for adults closely align with the overall pop-
ulation results. The infection rates used in these simulations lead to outbreaks,
reflecting the dynamics observed in the total population. This indicates that
the behavior and infection patterns within the adult population strongly in-
fluence the overall trends and patterns observed in the age structure model.
The high susceptibility and potential for disease transmission among adults

significantly contribute to the overall disease dynamics.

These insights underscore the importance of implementing tailored strate-

gies and interventions that consider the unique vulnerabilities and behaviors of

different age groups in effectively managing the ongoing Covid-19 pandemic.
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While children may exhibit lower susceptibility or milder symptoms, it is cru-
cial to recognize the role of adults in disease transmission and implement
targeted measures to protect vulnerable individuals, such as older adults or
those with underlying health conditions.

Furthermore, it is essential to refine the model to achieve endemic sta-
bility. In the current model, the simulations for children do not reach endemic
stability. Therefore, it is crucial to consider the necessary conditions required
to achieve endemic stability. One of the potential considerations is increasing
the infection rate, as this has shown the presence of infected individuals and

the attainment of an endemic stability state in the simulations.

Single age class Partial Immunity without Birth and Death

This refined model introduces the concept of re-infection and incorpo-
rates it into the dynamics of the disease. Following the initial infection and
recovery (asymptomatic), individuals become susceptible to re-infection, al-
though the likelihood of re-infection is lower compared to the first infection.
Specifically, we use parameter values of 7 = 0.05 for the likelihood of first
infection and 7" = 0.0125 for the likelihood of re-infection.

The model retains similar parameters for the probability of infection
progressing to asymptomatic and symptomatic states as the previous single age
class model with absence of immunity. These parameters govern the likelihood
of infection progress to asymptomatic state and transmission probabilities be-
tween infected and susceptible individuals.

The remaining parameters and initial conditions are consistent with

the previous single age model without immunity, capturing the population
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dynamics and initial states of susceptible, infected, recovered (asymptomatic),
and diseased (symptomatic) individuals.

By incorporating re-infection dynamics with a diminished power of in-
fection after recovery, this refined model allows us to explore the possibility
of multiple infections. This is particularly important for understanding the
long-term dynamics and stability of diseases such as COVID-19, where wan-
ing immunity and re-infection have been observed.

Through extensive analysis and simulations using this single age class
re-infection model, we can gain valuable insights into how the transmission
rate and the power of infection after re-infection influence the overall disease
dynamics. This expanded model provides a more comprehensive understand-
ing of the complex interplay between transmission, recovery, and re-infection
processes, offering insights into the potential impact on susceptible, infected,

recovered (asymptomatic), and diseased (symptomatic) populations.

151



Single Age Class with Partial immunity
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Figure 3.21: This figure presents a simulation of a single age class model
with partial tmmunity, specifically focusing on re-infection dynamics and ex-
cluding the consideration of birth and death processes. At low infection rates,
the impact on the population is minimal, with only a small number of in-
dividuals in the infected, recovered, re-infected susceptible, and disease com-
partments. However, as the infection rate increases, a transition occurs to a
steady state where the disease spreads extensively, resulting in a higher num-
ber of re-infections. The higher infection rate leads to a gradual decrease in
the susceptible population until it reaches zero, indicating that the disease has
spread to the majority of the population. These findings underscore the signif-
icant influence of infection rates on the dynamics of re-infection and highlight
the potential for disease spread in populations with higher levels of contagion.

In our analysis of the single age class model with partial immunity,
we made interesting observations regarding the dynamics of different com-

partments and their responses to varying infection rates. At low infection
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rates, the population remains largely unaffected, with minimal numbers in the
infected, recovered, re-infected susceptible, and disease compartments. It’s im-
portant to note that the model does not consider the birth process, resulting
in a constant total population size throughout the simulation.

However, as the transmission rate increases, there is a significant shift
in the model dynamics. A transition occurs from an absence of infection to
a steady state where the disease spreads extensively, leading to re-infections.
The higher transmission rate increases the chances of individuals coming into
contact with infected individuals, resulting in a larger number of people ac-
quiring the disease. Consequently, the susceptible, infected, asymptomatic,
symptomatic, and re-infected populations gradually diminish over time until
they reach zero.

Simultaneously, the population of re-infected susceptible individuals
grows as those who have previously recovered become susceptible to re-infection,
highlighting the loss of immunity and the potential for re-infection within the
model. This indicates that the disease has been eradicated from the population
since there are no infected individuals or re-infections present. However, it’s
important to note that if the disease were to re-emerge, these re-infected sus-
ceptible individuals could lose their immunity and become susceptible again.

The infected population initially experiences a rapid increase as more
individuals become infected due to the higher transmission rate. However, as
the susceptible population diminishes and a significant portion of the popu-
lation recovers to the disease, the infected population eventually reaches its
peak and starts to decline. This decline occurs due to the combined effects of

asymptomatic and symptomatic disease.
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The number of asymptomatic individuals shows an intriguing pattern,
initially increasing and subsequently decreasing. This pattern arises from
the interplay between recovery (asymptomatic), symptomatic disease, and re-
infection dynamics. Initially, as the disease spreads and individuals recover,
the number of recoveries rises. However, as re-infections occur and the suscep-
tible population decreases, the number of recoveries starts to decline.

Our findings highlight the importance of considering re-infection dy-
namics and the potential loss of immunity when studying the spread and
impact of diseases. Specifically, in the re-infection model, as the transmission
rate increases, the disease eventually spreads throughout the entire population,
establishing a steady state where everyone becomes infected and is susceptible
to re-infection. These observations provide valuable insights into the dynamics
of diseases and their long-term implications.

Additionally, we observed that the simulation did not achieve endemic
stability. To attain endemic stability, one of the considerations was to increase
the infection rate, which ultimately resulted in the simulation reaching an

endemic state.

Age Structure Partial Immunity without Birth and Death

In our investigation of the two-age class model with partial immunity;,
we examine the impact of different infection rates on the susceptible popu-
lation. Building upon the single age class model and absence of immunity
analysis, we introduce a distinction between children and adults by utilizing
different power of infection values. This differentiation allows us to explore

the stability of the disease within the population.
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To account for age-specific dynamics, we set a lower power of infection
(m. = 0.005) for children and a higher power of infection (7w, = 0.05) for
adults. Additionally, we consider the re-infection power of infection values
(ml = 0.00125 and 7, = 0.0125) to capture the possibility of re-infection after
recovery.

The likelihood of infection progressing to the asymptomatic state varies
between children and adults, with a value of approximately 0.995 for children
and 0.95 for adults. This discrepancy in recovery dynamics enables us to
examine the overall disease dynamics and its implications.

To simulate the transition from children to adults, we set the tran-
sition rate to be 0.001 for children transitioning to adults, while adults do
not transition to other age groups, as our focus lies on the children-to-adults
transition.

Taking into account the population data from San Francisco in 2021,
we initialize the model using the recorded figures. The population of children
aged 0 to 2 years old in San Francisco was approximately 23,996, while the
adult population was around 791,205. These population values serve as the
foundation for our model initialization, while maintaining consistent initial
conditions for the other compartments.

By considering these parameters and population data, our objective is
to gain valuable insights into the disease dynamics and understand its potential

for endemic stability within a population comprising distinct age groups.
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Total (Children and Adults) Age Class with Partial Immunity without Birth and Death
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Figure 3.22: This figure illustrates total age class model with partial immunity
no birth and death processes demonstrate a similar trend to the single age
class model, with consistent disease dynamics. However, a notable difference
arises in the susceptible population. Unlike the single age class model where the
susceptible population reaches zero, the two-age class model maintains a non-
zero susceptible population due to the presence of two distinct age groups with
varying power of infection values. This highlights the importance of age-specific
dynamics in understanding the persistence of the disease and the potential for
continued transmission within the population.

The results of our analysis exhibit a similar trend to the single age class
model, indicating that the dynamics of the disease remain consistent. How-
ever, an interesting observation emerges regarding the susceptible population.
In contrast to the single age class model where the susceptible population

eventually reaches zero, in the two-age class model, we find that the suscep-
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tible population does not decline to zero. This deviation from the single age
class model can be attributed to the presence of two distinct age groups with
different power of infection values.

Similarly, we observed that the simulation did not achieve endemic
stability. To attain endemic stability, one of the considerations was to increase
the infection rate, which ultimately resulted in the simulation reaching an

endemic state.

Age structure model partial
immunity without births and deaths

Children Adults

A =, =0.10 and 7= 0.005, 7, = 0.05 A, =, =0.10and r_= 0.005, r_ =0.05

T(L =0.00125 and v'a =0.0125 5 ,; =0.00125 and n; 00125
T i T T u T

. ! . . L : . . :

[ 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Time (days) Time (days)

'\c = Aa =2.00 and w, = 0.005, 7, =0.05 /\c = )‘a =2.00 and 7, = 0.005, m, =0.05

7, =0.00125 and 7 = 0.0125 7, =0.00125 and 7, = 0.0125
T T T

- g L g L ! R B T L L LT L T A I T I T L TR TP S u—|
0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Time (days) Time (days)

Figure 3.23: The simulation results of the age structure model with partial im-
munity, without considering birth and death rates and separating children and
adults, reveal similar patterns as absence of immunity. On the other hand, the
simulation results for the adult population resemble those of the total popula-
tion model, showing similar trends and dynamics. These findings align with
our existing knowledge of Covid-19 dynamics and provide further evidence to
support our understanding. The simulation results demonstrate the stability
and reliability of our understanding of the disease’s behavior within different
age groups. In particular, the simulation of the adult population shows a steady
state, indicating that the disease has been eradicated from that age group.

Our analysis confirms that the simulation results for the children pop-
ulation in the two-age class model align closely with both the absence of im-

munity and immunity models. Similarly, the simulation results for the adult
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population resemble those of the total population model. Therefore, our anal-
ysis does not introduce any new significant findings that deviate from previous
observations.

In the simulation of the children population, we consistently observe
the absence of outbreaks regardless of the infection rates tested. The popu-
lation size of children remains constant throughout the simulation, indicating
either a lower susceptibility or a different disease progression in this age group
compared to adults.

Similarly, the simulation results for the adult population mirror those of
the total population model, indicating that the behavior of the adult popula-
tion strongly influences the overall trends observed in the age structure model.
These outcomes align with our existing understanding of Covid-19 dynamics.

To achieve endemic stability in the model, it is crucial to refine the
model by incorporating interactions between the two age classes. By consid-
ering contact and potential disease transmission between children and adults,
we can enhance our understanding of transmission patterns within the popula-
tion. Additionally, identifying the necessary conditions for achieving endemic
stability requires a comprehensive analysis of factors such as infection rates,
population demographics, and intervention strategies.

While our analysis may not introduce novel findings, it reinforces and
corroborates the patterns observed in previous models, highlighting the stabil-
ity and reliability of our understanding of Covid-19 dynamics within different
age groups. However, the ultimate goal is to achieve endemic stability. Increas-
ing the infection rate alone does not lead to endemic stability in the model

incorporating partial immunity without considering birth and death rates.
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Adjusting parameters such as the time scale of immunity loss, the power of
infection for subsequent infections, and the subsequent infection rate does not
result in significant changes either.

To establish the necessary conditions for endemic stability, analytical
calculations and evaluations of the model are essential. These calculations can
help determine the specific requirements for achieving endemic stability, pro-
viding valuable insights into the dynamics of disease transmission and control.

Our analysis reinforces the need for ongoing research and refinement of
models to improve our understanding of disease dynamics and inform effective

strategies for managing infectious diseases like Covid-19.

Single age class Partial Immunity with Birth and Death

In our analysis of the partial immunity model with consideration of
birth and death dynamics, we enhance the previous model by incorporating
the natural processes of population growth and mortality. By introducing birth
and death rates into the model, we aim to capture the realistic scenario where
new individuals enter the population through births, while existing individuals
depart through natural deaths.

By including birth and death rates of 0.005, which represent equal
rates of new births and natural deaths, we are able to explore the impact of
these factors on the dynamics of the disease. New births contribute to the
susceptible population, introducing a continuous influx of individuals who are
vulnerable to the disease. On the other hand, natural deaths reduce the total
population and have implications for all compartments of the model, including

the susceptible, infected, recovered, and diseased populations.
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Through the incorporation of birth and death rates, our analysis pro-
vides a more comprehensive understanding of the long-term implications of
disease transmission, recovery, and population dynamics. We can observe how
the interplay between these factors influences the stability and trends of the
susceptible, infected, recovered, and diseased populations over time. This re-
fined model enables us to evaluate the potential impacts of the disease on
population growth, as well as the overall health and well-being of the popula-

tion.
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Single Age Class with Partial immunity: Birth and Death
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Figure 3.24: The analysis of partial immunity with birth and death dynamics in
the age structure model reveals intriguing patterns and dynamics. The incor-
poration of birth processes introduces a dynamic interaction between disease
transmission and population growth, leading to fluctuations in the suscepti-
ble population before reaching a stable state. Additionally, the population of
re-infected susceptible individuals initially increases but eventually stabilizes.
Furthermore, the simulation results indicate that the model has reached a steady
state with a low number of symptomatic cases, suggesting an endemic state.
This suggests that the population has acquired immunity, and those who were
previously infected have developed protection against further infections. As a
result, the re-infected population eventually diminishes and reaches zero, indi-
cating that only individuals who have never been infected with Covid-19 before
are susceptible to the disease.

In our analysis of the single age class model with partial immunity,
birth, and death dynamics, we have uncovered intriguing patterns that provide

new insights into the dynamics of the disease. While we still observe similar
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overall trends as in previous models, the inclusion of birth and death processes
introduces additional complexities and dynamics to the epidemic dynamics.

One notable distinction is the behavior of the susceptible population.
As the infection rate increases and the disease spreads, the susceptible pop-
ulation initially decreases, consistent with our previous findings. However,
the introduction of birth processes means that new individuals are continu-
ously added to the population. Consequently, when the susceptible population
reaches a lower value, it starts to increase again due to the birth of newborn in-
dividuals. This interplay between disease transmission and population growth
creates a dynamic feedback loop that influences the course of the epidemic.
The continuous addition of new susceptible individuals can sustain the spread
of the disease and potentially lead to fluctuations in the susceptible population
over time.

Regarding the re-infected susceptible population, we observe an initial
increase followed by a relatively stable phase. As individuals who have re-
covered from the disease become susceptible to re-infection, the population of
re-infected susceptible gradually rises. However, it eventually reaches a point
where it stabilizes. The decrease in the re-infected susceptible population can
be attributed to natural deaths or a reduction in the number of individuals
becoming re-infected. The re-infected transmission rate, which determines the
probability of re-infection, plays a significant role in shaping the dynamics of
the re-infected susceptible population. Different re-infected transmission rates
can result in varying levels of susceptibility to re-infection and influence the
overall spread and persistence of the disease.

Importantly, we observe that the re-infected population eventually goes
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to zero, indicating that individuals who have been infected with Covid-19 once
or more acquire some level of immunity. However, those who have not been
previously infected remain susceptible to infection. This highlights the dy-
namic nature of partial immunity and the finite duration of protection against
re-infection. Over time, individuals who have been re-infected may lose their
immunity, making them susceptible to subsequent infections.

The findings from studying the interplay of different age classes in the
model can provide a deeper understanding of the disease dynamics. By divid-
ing the population into multiple age classes, we can investigate how different
age groups interact, potentially leading to variations in disease transmission,
susceptibility, and re-infection dynamics. This understanding can inform the
development of targeted strategies for disease control and prevention, tailored

to the specific dynamics of different age groups within the population.

Age Structure Partial Immunity with Birth and Death

In this enhanced version of the age structure model, we incorporate
the dynamics of birth and death, which were absent in the previous model
with partial immunity. By including these factors, our objective is to create a
more realistic simulation that better captures the complexities of population
dynamics in the context of disease transmission. In this updated model, only
adults contribute to the birth process, resulting in a birth rate of p- V,, where
1 is defined as ¢ - % Additionally, we assume a death rate of zero for children.

The introduction of birth and death dynamics allows us to investigate
how these natural population processes interact with the dynamics of disease

transmission and collectively shape the overall population structure. New
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births contribute to the susceptible population, introducing individuals who
are vulnerable to the disease. Conversely, natural deaths reduce the total pop-
ulation size and have an impact on all compartments of the model, including
the susceptible, infected, recovered, and diseased populations.

By considering these demographic factors, we can explore how changes
in birth and death rates influence disease dynamics and population outcomes.
The birth rate affects the rate at which susceptible individuals are added to
the population, potentially increasing the pool of individuals who can contract
the disease. On the other hand, natural deaths decrease the overall population
size, which can have implications for disease spread and the recovery of the

population.
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Figure 3.25: The figure depicting the age structure model with partial immu-

nity, where birth is represented by p = o %a and p. = 0, reveals interesting
dynamics. Similar to previous models, we observe the occurrence of an out-

break as we increase the infection rate. However, a distinctive feature emerges
in this model: the disease is eventually eradicated, as both the infected and
re-infected populations converge to zero. This signifies that there is no active
disease present in the population, and individuals have acquired tmmunity.

The age structure model with partial immunity, incorporating birth
dynamics represented by p = 5% and p. = 0, exhibits intriguing dynamics
that deepen our understanding of disease spread and immunity acquisition.
Similar to previous models, an outbreak occurs as we increase the infection

rate, resulting in a rise in the number of infected individuals. However, a

notable distinction arises in this model: the disease ultimately gets eradicated,
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leading to both the infected and re-infected populations converging to zero.
This implies a complete absence of the disease in the population and signifies
the acquisition of immunity by individuals.

The eradication of the disease in this model can be attributed to multi-
ple factors. First, the interplay between transmission dynamics and immunity
acquisition plays a pivotal role. As the infection rate rises, susceptible individ-
uals become infected, leading to a surge in the infected population. However,
as infected individuals recover, they develop partial immunity, reducing their
susceptibility to re-infection. This gradual accumulation of immunity across
the population acts as a protective barrier, gradually depleting the pool of
susceptible individuals and impeding the further spread of the disease.

Additionally, the introduction of birth dynamics into the model con-

tributes to the ultimate eradication of the disease. The birth rate, determined

Ne

~°, adds new susceptible individuals to the population. However,

by p =20
as the disease spreads and immunity is acquired, the susceptible population
gradually diminishes over time. This decline in susceptibility, coupled with
the absence of re-infection, eventually leads to the complete eradication of the
disease.

It is important to note that this model does not exhibit a steady state,
as the disease is ultimately eradicated rather than reaching an equilibrium.
This highlights the dynamic nature of disease dynamics and the potential
for disease elimination through immunity acquisition. To achieve endemic

stability, we increase the infection rate and observe the behavior of the model.

When this is done, we observe that the model attains endemic stability.
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Figure 3.26: The figure presented depicts the dynamics of disease transmission
in the age structure model with partial immunity and birth/death dynamics. In
this model, we set p. = 0 to exclude children from the analysis, and p = (5%—;,
where p represents the birth rate in relation to the number of adults (N,) and
the proportion of infected individuals (N.). Interestingly, when examining the
simulation results for children, we observe no outbreak as we increase the in-
fection rates. This suggests that the disease transmission dynamics among
children do mot contribute significantly to the overall spread of the disease.
Consequently, the impact of the disease on the child population may be rela-
tively limited in this particular model configuration. In contrast, when focusing
on the adult population, we observe similar results as those observed in the to-
tal population. This implies that adults play a crucial role in influencing the
dynamics of the disease. The susceptibility of adults to Covid-19 appears to
be higher, leading to a greater likelihood of outbreaks occurring among this
age group. The interplay between infection rates, susceptibility, and the inter-
actions among adults contribute to the observed disease dynamics in the age
structure model.

The dynamics of disease transmission in an age structure model with

partial immunity and birth/death dynamics, where p. = 0 and p * N, with

n=>~ ]I\\[[ . This model configuration allows us to gain valuable insights into the
role of different age groups in influencing the spread and impact of the disease.
When we focus on the simulation results for children, we observe an

intriguing finding: there is no outbreak as we increase the infection rates.
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This suggests that the transmission dynamics among children alone do not
contribute significantly to the overall spread of the disease in this particular
model. It is important to note that the absence of an outbreak in children does
not mean they are immune or unaffected by the disease. It simply indicates
that the transmission patterns and interactions within the child population
are not driving the observed outbreak dynamics.

In contrast, the simulation results for adults reveal a different scenario.
We observe similar trends in the dynamics of the disease as those observed
in the total population, suggesting that adults have a more pronounced in-
fluence on the disease dynamics compared to children. This finding implies
that adults are more susceptible to Covid-19, leading to a higher likelihood of
outbreaks occurring among this age group. The interplay between infection
rates, susceptibility levels, and interactions among adults play a significant
role in shaping the observed disease dynamics in the age structure model.

We observe similar pattern that the model does not attain endemic
stability. In order to achieve this, we need to consider increasing the infection
rate. When done so, we observe that the model reaches an endemic stability

with very few number of infected people.

Single Age Class Models Force of Infection and Disease Incidence

In our analysis of the force of infection and disease incidence, we com-
pare the average values between the single age class and two-age class models.
This comparison allows us to understand the factors that contribute to the dis-
ease reaching an endemic state in the population under absence of immunity

and partial immunity. By examining these metrics, we can gain valuable in-
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sights into the conditions required for the disease to establish a stable presence

within the population.

Single Age Class Models
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Figure 3.27: The figure illustrates the impact of immunity and birth/death pro-
cesses on disease dynamics. Without immunity, increasing infection rates lead
to a rise in disease incidence, eventually reaching a plateau indicating endemic
stability. Partial immunity significantly reduces disease incidence, and consid-
ering birth/death processes further decreases it. In the partial immunity model
without birth/death, the disease is eradicated, and everyone becomes re-infected
susceptible. This absence of reinfection cycles leads to a constant number of
symptomatic individuals and endemaic stability.

In our study of the single age class model without immunity, we have
made interesting observations regarding the relationship between the infection
rate, force of infection, disease incidence, and disease stability.

We found that as the infection rate increases in the absence of im-
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munity, there is a corresponding rise in the force of infection. The force of
infection represents the rate at which susceptible individuals become infected
per unit time and is influenced by factors such as contact patterns and dis-
ease infectiousness. With a higher infection rate, more individuals come into
contact with infected individuals, leading to an increased force of infection.

This increase in the force of infection also results in a higher disease in-
cidence, which measures the number of new cases within a specific population
over time. As more individuals become infected due to the increased force of
infection, the disease incidence rises. However, we observed that this upward
trend eventually reaches a plateau, indicating the attainment of endemic sta-
bility. At this point, the disease becomes endemic within the population, and
the incidence remains relatively constant over time.

Moving on to the partial immunity model, where individuals have ac-
quired partial immunity through previous infections, we noticed a greater de-
crease in the magnitude of disease incidence compared to the model without
immunity. The presence of partial immunity reduces the susceptibility of pre-
viously infected individuals, resulting in a dampening of disease incidence and
mitigating the overall impact of the disease.

When we introduced birth and death dynamics into the partial immu-
nity model, we observed a slight decrease in the magnitude of disease incidence.
The interplay between births and deaths influenced disease dynamics, leading
to a smaller decrease in disease incidence compared to the partial immunity
model without these dynamics. The introduction of births contributes to a
susceptible population, increasing the pool of individuals at risk of infection,

while deaths reduce the overall population size, limiting the spread of the
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disease. Thus, considering birth and death processes slightly decreases the
magnitude of disease incidence.

It is worth noting that in our previous analysis of the partial immu-
nity model without birth and death processes, we observed the eradication of
the disease, indicating that everyone in the population had acquired immu-
nity. However, when birth and death dynamics were incorporated, the disease
persisted, although at a reduced magnitude. This suggests the existence of
a continuous cycle of infection and partial immunity, leading to a constant
number of symptomatic individuals and establishing endemic stability.

These findings highlight the importance of understanding the interplay
between infection rates, force of infection, disease incidence, and the influence
of immunity, birth, and death processes. Such understanding can provide valu-
able insights for public health interventions and strategies aimed at controlling

the spread of diseases and safeguarding vulnerable populations.
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Age Structure Models Force of Infection and Disease Incidence
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Figure 3.28: This figure depicts the effects of immunity and demographic fac-
tors on the dynamics of COVID-19 within an age structure model. The left
panel represents the absence of immunity, where disease incidence initially
increases with the infection rate and eventually reaches a plateau, indicating
endemic stability. Notably, without immunity, the peak of disease incidence
1s considerably higher. In the right panel, we explore the scenario of partial
immunity and consider two cases: one without incorporating birth and death
processes and the other with their inclusion. When birth and death processes
are not considered, the presence of partial immunity acquired from previous
infections leads to a reduction in the peak of disease incidence. This high-
lights the role of immunity in mitigating the impact of the disease. Howewver,
when birth and death processes are included in the model, the results align with
the scenario of partial immunity without considering these demographic fac-
tors. This suggests that there is no active disease present in the population,
and symptomatic cases reach an endemic stability. The inclusion of birth and
death processes further contributes to the overall dynamics of the disease by
accounting for changes in population size over time.
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Our investigation into the impact of partial immunity on disease dy-
namics within an age structure model has yielded fascinating insights, partic-
ularly when considering the incorporation of birth and death processes.

In line with the single age class model, we confirm that as the infection
rate increases, there is an initial surge in disease incidence, indicating a higher
number of new cases in the population. However, as the infection rate contin-
ues to rise, we observe a plateau in the peak of disease incidence, indicating
the attainment of endemic stability. This suggests that the disease has reached
a state where the incidence remains relatively constant over time.

When examining the scenario of partial immunity, we discover distinct
outcomes depending on whether we include birth and death processes in the
model. Without considering these demographic factors, we observe a signif-
icantly greater reduction in the peak of disease incidence compared to the
absence of immunity model. This reduction is attributed to the presence of
individuals who have acquired partial immunity through previous infections,
leading to a lower susceptibility to the disease and dampened disease incidence.
The decline in the peak of disease incidence highlights the role of partial im-
munity in mitigating the disease’s impact.

However, when we incorporate birth and death processes into the model,
the results align with the scenario of partial immunity without considering
these demographic factors. This suggests the absence of active disease in the
population, with symptomatic cases reaching endemic stability. The inclusion
of birth and death processes further contributes to the overall dynamics by
accounting for changes in population size over time.

Furthermore, our findings indicate that due to a lower power of infection
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and subsequent infection rate among children, a higher proportion of infected
children become asymptomatic, leading to a lower number of symptomatic
cases in the population.

These insights underscore the complexity of disease dynamics within an
age structure model and emphasize the interplay between immunity, birth and
death processes, and disease incidence. They highlight the importance of con-
sidering these factors in understanding and managing the spread of infectious
diseases. The knowledge gained from this analysis can inform the development
of targeted strategies and interventions to effectively control and mitigate the

impact of diseases like COVID-19 in populations with diverse age structures.
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3.4 Discussion

3.4.1 Immunity

Polio, primarily affecting children under 5, exhibits distinct character-
istics in its transmission dynamics and disease burden. Our analysis of polio
dynamics revealed several important findings. When the infection rate is low,
the impact on the population is minimal, resulting in a low number of infec-
tions and symptomatic cases. However, as the infection rate increases, the
disease burden intensifies, leading to more infections within a shorter time
frame.

The interplay between population dynamics, such as new births and
natural deaths, also influences the spread of polio. In scenarios with equal
birth and death rates, the susceptible population initially decreases as more
individuals become infected and recover. However, over time, the susceptible
population gradually increases due to new births, while the number of infected
individuals reaches a steady state. This equilibrium is crucial for understand-
ing the long-term dynamics of polio.

In the refined model considering births from the adult population and
no deaths among children, we observed the eradication of polio as the number
of infected individuals eventually reduced to zero. Interestingly, the analysis
indicated that children were less likely to become symptomatic when infected
with polio compared to adults. The model highlighted the importance of
asymptomatic cases among children, contributing to the reduction in disease
incidence. However, it also demonstrated that children who were not infected

during childhood remained susceptible as they transitioned into adulthood,
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indicating the potential for re-emergence of polio.

Furthermore, the age structure model provided valuable insights into
the interaction between age groups and disease dynamics. Children exhibited
a higher susceptibility to polio, with a relatively low number of symptomatic
cases even at higher infection rates. Conversely, adults had a greater likelihood
of experiencing symptomatic disease and potential paralysis. This age-specific
analysis shed light on the differential impacts of polio within each age group.

Analyzing historical data, we observed that the prevalence of polio was
lower in the past when children were exposed to the disease at a younger age
due to poor sanitation. This exposure led to the development of immunity,
resulting in a larger population with polio immunity. However, improvements
in sanitation reduced children’s exposure to polio, leading to a larger suscep-
tible population. As these individuals grew up and became adults, they were
more likely to experience symptomatic disease and paralysis due to their lack
of previous exposure and immunity.

These findings have significant implications for polio control strategies.
Vaccination programs targeting children under 5 are crucial in reducing polio
transmission and protecting vulnerable populations. Additionally, ensuring
high vaccination coverage among adults can help prevent symptomatic cases
and long-term consequences. Population immunity plays a critical role, and
maintaining high immunization coverage and hygiene practices are key in con-

trolling the spread of polio and protecting vulnerable individuals.
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3.4.2 Absence of Immunity and Partial Immunity

When studying the spread of Covid-19, it becomes evident that a sin-
gle age class model is insufficient to capture the complexity of the disease
dynamics. In reality, interactions between individuals of different ages play
a crucial role. Children, for instance, have shown to be less susceptible to
the virus compared to adults. Their immune systems are often more resilient,
allowing them to mount effective defenses against the virus and resulting in
a higher likelihood of asymptomatic infections. This characteristic has signif-
icant implications for disease transmission, as asymptomatic individuals can
unknowingly spread the virus to others, contributing to the overall spread of
the disease.

To create a more accurate model that mimics real-world scenarios, it
is essential to consider factors such as birth and death rates. Births introduce
new susceptible individuals into the population, while deaths remove individ-
uals from the population altogether. These factors are particularly relevant
in the context of Covid-19, as they contribute to the overall dynamics of the
disease.

Incorporating birth and death rates into the model allows us to observe
the long-term effects of the disease. Over time, as individuals are infected and
recover, they develop partial immunity, which reduces their likelihood of be-
ing re-infected and experiencing severe symptoms. This gradual acquisition
of immunity, coupled with the ongoing birth and death processes, can lead to
disease eradication. As the number of infected individuals decreases, the dis-
ease reaches a state of endemic stability, where the occurrence of symptomatic

cases becomes less frequent.
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By incorporating an age structure model, we gain valuable insights into
the differential impact of Covid-19 on different age groups. It becomes evident
that the likelihood of infection progressing to a symptomatic state increases
with age. Adults, who generally have more developed immune systems but
may also have underlying health conditions, are more prone to experiencing
severe symptoms and complications. Therefore, they contribute significantly
to the overall incidence of the disease.

Interestingly, when considering re-infection, the likelihood of progress-
ing to a symptomatic state is lower compared to initial infection. This suggests
that individuals who have already been infected and experienced symptoms
have built some level of immunity, which provides a degree of protection upon
subsequent exposure to the virus. Consequently, their re-infection is more
likely to result in a milder course of illness or even an asymptomatic infec-
tion. This phenomenon contributes to a decrease in disease incidence as the
epidemic progresses.

Breaking down the analysis by age groups, we find that children have
a lower likelihood of progressing to a symptomatic state upon subsequent re-
infection compared to adults. This can be attributed to their robust immune
responses, which enable them to effectively control the virus and minimize
the severity of symptoms. As a result, the overall disease incidence is sig-
nificantly reduced, as a larger proportion of infections in the population are

asymptomatic or mild among children.
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Chapter 4

Conclusion

In recent years, infectious diseases have posed significant challenges
to global public health. Understanding the dynamics of disease transmission
is essential for developing effective control strategies and mitigating the im-
pact of these diseases on populations. Our analysis of polio, bubonic plague
during the Second Pandemic, and COVID-19 sheds light on the complex inter-
play between biological factors, population dynamics, and historical context
in shaping disease burden and transmission.

Polio, a viral disease primarily affecting children under 5, exhibits dis-
tinct characteristics in its transmission dynamics. Our study reveals that when
the infection rate is low, the impact on the population is minimal, with a low
number of infections and symptomatic cases. This finding underscores the
importance of maintaining low infection rates through vaccination programs
targeting children under 5. By protecting this vulnerable age group, we can
reduce transmission and prevent the long-term consequences of the disease.

Furthermore, our analysis highlights the role of population dynamics,

including birth and death rates, in shaping polio transmission. In scenarios
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where birth and death rates are equal, the susceptible population initially
decreases as more individuals become infected and recover. However, over
time, the susceptible population gradually increases due to new births. This
equilibrium between births and infections is critical in understanding the long-
term dynamics of polio and the potential for disease eradication.

In the refined model considering births from the adult population and
no deaths among children, we observe the eventual eradication of polio as the
number of infected individuals reduces to zero. This finding underscores the
importance of vaccination efforts targeting children and maintaining high im-
munization coverage among adults to prevent the re-emergence of the disease.

Moving on to the bubonic plague during the Second Pandemic, our
study supports the notion that both rodent and human transmission con-
tributed to its spread. The inclusion of rodents, particularly rats, as signifi-
cant players in the transmission dynamics of the disease is a crucial finding.
The Lynch-Oster model, which incorporates both rodent and human trans-
mission, demonstrates superior fit to observed mortality patterns compared
to other models. This suggests that rodents played a significant role in the
transmission dynamics of the bubonic plague.

However, it is important to acknowledge the limitations and uncertain-
ties associated with modeling infectious diseases. Our study was based on
specific assumptions and available data, which may introduce inherent biases.
Different modeling approaches and parameterizations may yield alternative re-
sults, and therefore, the choice of model should consider not only the goodness
of fit but also biological plausibility and prior knowledge about the disease.

The contradiction with Dean et al.’s paper highlights the complexity of
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modeling plague transmission and underscores the need for further research.
Divergent findings among studies may arise due to variations in data sources,
model assumptions, or methodological approaches. To gain a more comprehen-
sive understanding of the transmission dynamics during the Second Pandemic,
additional data are needed. This includes information on ecological factors
that affect rodent populations, the dynamics of ectoparasites, and detailed
historical records that provide insights into human behavior and movement
patterns.

Turning to COVID-19, our analysis reveals that a single age class model
is insufficient to capture the complexity of disease dynamics. Interactions be-
tween individuals of different ages play a crucial role, with children exhibiting
a lower susceptibility to the virus compared to adults. This characteristic has
significant implications for disease transmission, as asymptomatic children can
unknowingly spread the virus to others.

To create a more accurate model that mimics real-world scenarios, it
is essential to consider factors such as birth and death rates. Births introduce
new susceptible individuals into the population, while deaths remove individ-
uals from the population altogether. These factors contribute to the overall
dynamics of the disease and its long-term effects.

Incorporating an age structure model into our analysis provides valu-
able insights into the differential impact of COVID-19 on different age groups.
Adults, who generally have more developed immune systems but may also have
underlying health conditions, are more prone to experiencing severe symptoms
and complications. This underscores the need for targeted interventions and

protective measures for this age group.
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Furthermore, our analysis demonstrates that individuals who have al-
ready been infected and experienced symptoms have built some level of im-
munity, resulting in a lower likelihood of progressing to a symptomatic state
upon subsequent re-infection. This phenomenon contributes to a decrease in
disease incidence as the epidemic progresses.

The findings highlight the importance of ongoing vaccination efforts,
surveillance, hygiene practices, and targeted interventions based on age-specific
factors in controlling the spread of COVID-19. Maintaining high immunization
coverage, particularly among vulnerable populations, is crucial for reducing
disease transmission and protecting individuals from severe illness.

Analysis of polio, bubonic plague, and COVID-19 underscores the com-
plexity of infectious diseases and the need for comprehensive approaches to un-
derstanding and controlling their transmission. By considering factors such as
age-specific susceptibility, population dynamics, and historical context, we can
develop more accurate models and inform evidence-based interventions. On-
going research, data collection, and collaboration among scientists and public
health professionals are essential for advancing our understanding of these

diseases and enhancing global preparedness for future outbreaks.

182



Bibliography

1]

A Costa, M Pires, R Resque, and SSMS Almeida. Mathematical model-
ing of the infectious diseases: key concepts and applications. Journal of

Infectious Diseases and Epidemiology, 7(5):209, 2021.

Katharine R Dean, Fabienne Krauer, Lars Wallge, Ole Christian
Lingjeerde, Barbara Bramanti, Nils Chr Stenseth, and Boris V Schmid.
Human ectoparasites and the spread of plague in europe during the second
pandemic. Proceedings of the National Academy of Sciences, 115(6):1304—
1309, 2018.

Mirjam Kretzschmar and Jacco Wallinga. Mathematical models in infec-
tious disease epidemiology. Modern infectious disease epidemiology: Con-
cepts, methods, mathematical models, and public health, pages 209-221,
2010.

Michael Y Li. An introduction to mathematical modeling of infectious

diseases, volume 2. Springer, 2018.

Nicholas C Grassly and Christophe Fraser. Mathematical models of in-
fectious disease transmission. Nature Reviews Microbiology, 6(6):477-487,

2008.

183



[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

Roy M Anderson and Robert M May. Infectious diseases of humans:

dynamics and control. Oxford university press, 1991.

Waleed M Sweileh. Global research activity on mathematical modeling
of transmission and control of 23 selected infectious disease outbreak.

Globalization and Health, 18(1):1-14, 2022.

Lee A Segel and Leah Edelstein-Keshet. A Primer in Mathematical Mod-

els in Biology, volume 129. Siam, 2013.

Johannes Miiller. Mathematical models in biology. Technical University

Munich, Centre for Mathematical Sciences, 2004.

Linda JS Allen. The sir model for spread of disease: The differential

equation model. Mathematics Magazine, 80(4):233-245, 2007.
Jason Brownlee. Markov chain monte carlo (MCMC) for probability, 2019.

Mark Pinsky and Samuel Karlin. An introduction to stochastic modeling.

Academic press, 2010.

StatLect. Metropolis-hastings algorithm. https://wuw.statlect.com/

fundamentals-of-statistics/Metropolis-Hastings-algorithm, n.d.

Roger D. Peng. Advanced statistical computing. https://bookdown.org/

rdpeng/advstatcomp/, 2019. Accessed: April 16, 2023.

Kathryn A Glatter and Paul Finkelman. History of the plague: An ancient
pandemic for the age of covid-19. The American journal of medicine,

134(2):176-181, 2021.

184


https://www.statlect.com/fundamentals-of-statistics/Metropolis-Hastings-algorithm
https://www.statlect.com/fundamentals-of-statistics/Metropolis-Hastings-algorithm
https://bookdown.org/rdpeng/advstatcomp/
https://bookdown.org/rdpeng/advstatcomp/

[16]

[17]

[18]

[19]

[20]

Xavier Valles, Nils Chr Stenseth, Christian Demeure, Peter Horby, Paul S
Mead, Oswaldo Cabanillas, Mahery Ratsitorahina, Minoarisoa Rajerison,
Voahangy Andrianaivoarimanana, Beza Ramasindrazana, et al. Human

plague: An old scourge that needs new answers. PLoS neglected tropical

diseases, 14(8):e0008251, 2020.

Christopher John Duncan and Susan Scott. What caused the black death?

Postgraduate medical journal, 81(955):315-320, 2005.

Ruifu Yang. Plague: recognition, treatment, and prevention. Journal of

clinical microbiology, 56(1):e01519-17, 2018.

Thomas Butler. Plague into the 21st century. Clinical Infectious Diseases,

49(5):736-742, 2009.

MJ Keeling and CA Gilligan. Bubonic plague: a metapopulation model
of a zoonosis. Proceedings of the Royal Society of London. Series B:

Biological Sciences, 267(1458):2219-2230, 2000.

Luke C. Mattfeld, Philip A. Eckhoff, and John S. Brownstein. A data-

driven comparison of plague models. Epidemics, 25:70-79, 2018.

Zhe Sun, Lei Xu, Boris Schmid, Katharine Dean, Zhibin Zhang, Yan
Xie, Xiye Fang, Shuchun Wang, Qiyong Liu, Baolei Lyu, et al. Data
from: Human plague system associated with rodent diversity and other

environmental factors. Zenodo, 2019.

PG Coleman, Brian D Perry, and Mark EJ Woolhouse. Endemic sta-
bility—a veterinary idea applied to human public health. The Lancet,
357(9264):1284-1286, 2001.

185



[24]

[25]

[26]

28]

[29]

Svetlana Bunimovich-Mendrazitsky and Lewi Stone. Modeling polio as
a disease of development. Journal of theoretical biology, 237(3):302-315,
2005.

Akio Nomoto. Molecular aspects of poliovirus pathogenesis. Proceedings

of the Japan Academy, Series B, 83(8):266-275, 2007.

Man Mohan Mehndiratta, Prachi Mehndiratta, and Renuka Pande. Po-
liomyelitis: historical facts, epidemiology, and current challenges in erad-

ication. The Neurohospitalist, 4(4):223-229, 2014.

Muhammad Suleman Rana, Rana Jawad Asghar, Muhammad Usman,
Aamer Ikram, Muhammad Salman, Massab Umair, Syed Sohail Zahoor
Zaidi, Muhammad Anas, and Nadeem Ullah. The resurgence of wild po-
liovirus in pakistan and afghanistan: A new setback for polio eradication.

Journal of Infection, 85(3):334-363, 2022.

Leslie Roberts. Africa battles out-of-control polio outbreaks. Science

(New York, NY), 375(6585):1079-1080, 2022.

Nete Munk Nielsen, Peter Aaby, Jan Wohlfahrt, Kare Mglbak, and Mads
Melbye. The polio model. does it apply to polio? International Journal
of epidemiology, 31(1):181-186, 2002.

Centers for Disease Control and Prevention. About polio, 2021.

Stuart Blume and Ingrid Geesink. A brief history of polio vaccines. Sci-

ence, 288(5471):1593-1594, 2000.

Shiva Moein, Niloofar Nickaeen, Amir Roointan, Niloofar Borhani,

Zarifeh Heidary, Shaghayegh Haghjooy Javanmard, Jafar Ghaisari, and

186



[36]

[37]

[38]

187

Yousof Gheisari. Inefficiency of sir models in forecasting covid-19 epi-

demic: a case study of isfahan. Scientific Reports, 11(1):1-9, 2021.

Ian Cooper, Argha Mondal, and Chris G Antonopoulos. A sir model
assumption for the spread of covid-19 in different communities. Chaos,

Solitons € Fractals, 139:110057, 2020.

Saloni Dattani, Fiona Spooner, Sophie Ochmann, and Max Roser. Polio.

Our World in Data, 2022.

LN Nkamba, JM Ntaganda, H Abboubakar, JC Kamgang, and Lorenzo
Castelli. Global stability of a sveir epidemic model: Application to po-

liomyelitis transmission dynamics. 2017.

A EZRA. Spate of polio outbreaks worldwide puts scientists on alert.
Nature, 609, 2022.

Dimitra Klapsa, Thomas Wilton, Andrew Zealand, Erika Bujaki, Eugene
Saxentoff, Catherine Troman, Alexander G Shaw, Alison Tedcastle, Man-
asi Majumdar, Ryan Mate, et al. Sustained detection of type 2 poliovirus
in london sewage between february and july, 2022, by enhanced environ-

mental surveillance. The Lancet, 400(10362):1531-1538, 2022.

Isobel M Blake, Rebecca Martin, Ajay Goel, Nino Khetsuriani, Jo-
hannes Everts, Christopher Wolff, Steven Wassilak, R Bruce Aylward,
and Nicholas C Grassly. The role of older children and adults in wild po-

liovirus transmission. Proceedings of the National Academy of Sciences,

111(29):10604-10609, 2014.



[39]

[41]

[42]

[43]

[44]

Aktar Saikh and Nurul Huda Gazi. The effect of the force of infection
and treatment on the disease dynamics of an sis epidemic model with

immigrants. Results in Control and Optimization, 2:100007, 2021.

Marwan Al-Raeei. Numerical simulation of the force of infection and the
typical times of sars-cov-2 disease for different location countries. Model-

ing Earth Systems and Environment, 8(1):1443-1448, 2022.

Nils Chr Stenseth, Bakyt B Atshabar, Mike Begon, Steven R Belmain,
Eric Bertherat, Elisabeth Carniel, Kenneth L Gage, Herwig Leirs, and
Lila Rahalison. Plague: past, present, and future. PLoS medicine, 5(1):e3,
2008.

Jenny Howard. Plague was one of history’s deadliest diseases—then we
found a cure. National Geographic, https://www. nationalgeographic.
com/science/health-and-human-body/human-diseases/the-plague/.  Ac-
cessed, 7, 2020.

David JD Earn, Junling Ma, Hendrik Poinar, Jonathan Dushoff, and Ben-
jamin M Bolker. Acceleration of plague outbreaks in the second pandemic.
Proceedings of the National Academy of Sciences, 117(44):27703-27711,
2020.

Bjorn P Zietz and Hartmut Dunkelberg. The history of the plague and
the research on the causative agent yersinia pestis. International journal

of hygiene and environmental health, 207(2):165-178, 2004.

Kidsdata.org. Child population by age and gender. https://wuw.
kidsdata.org/topic/34/child-population-age-gender/table, 2023. Ac-

cessed on May 5, 2023.

188


https://www.kidsdata.org/topic/34/child-population-age-gender/table
https://www.kidsdata.org/topic/34/child-population-age-gender/table

189

[46] Stephen M Kissler, Christine Tedijanto, Edward Goldstein, Yonatan H
Grad, and Marc Lipsitch. Projecting the transmission dynamics of sars-
cov-2 through the postpandemic period. Science, 368(6493):860-868,

2020.



190

VITA

Author: Vivian John Goshashy
Place of Birth: Dar-es-salaam, Tanzania
Undergraduate Schools Attended: Edmonds Community College,
Central Washington University
Degrees Awarded: Associate Degree, 2018, Edmonds Community College
Bachelor of Science, 2021, Central Washington University
Honors and Awards: Merit Scholarship Award, 2019-2021, Central Wash-
ington University
Graduate Assistantship, Mathematics Department,
2021-2023, Eastern Washington University
Graduated Cum Laude, Central Washington Univer-
sity, 2021



	Theoretical epidemiology analysis of Plague, Polio, and Covid-19 outbreak
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	List of Figures
	List of Tables
	Introduction of Epidemiology Analysis
	Mathematical Modeling of Infectious Diseases
	Analyzing the classical SIR Model
	Model fitting

	Analysis of Plague Outbreak in Europe
	Overview of Plague Disease
	Mathematical Models
	Pneumonic Model
	Keeling-Gilligan RFT Model
	Human-Ectoparasite Model (HET model)
	Lynch-Oster RFT Model

	Result Methods
	Describing Mathematical Models fits
	Examining role of exposed group in Lynch-Oster model

	Discussion

	Analysis of the Hypothesis of Endemic Stability: Polio and Covid-19
	Hypothesis of Endemic Stability
	Immunity: Polio
	Overview of Polio Disease
	Mathematical Models
	Results

	Absence of Immunity and Partial Immunity: Covid-19
	Overview of Covid-19
	Mathematical Models
	Results

	Discussion
	Immunity
	Absence of Immunity and Partial Immunity


	Conclusion
	References
	Vita


